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Abstract
Ion channel problems concern macroscopic properties of ionic flow through nano-

scale ion channels. It is no coincidence that singularly perturbed systems serve as
suitable models for analyzing these multi-scale problems. The general framework of
singular perturbations often reveals special structures (idealized physical situations)
of multi-scale phenomena and allows one to extract concrete information for specific
problems. This is the case for the Poisson-Nernst-Plank (PNP) systems as primitive
models for ionic flows.

In this talk, we will describe the geometric singular perturbation framework for
an analysis of PNP systems and report a number of concrete results that are directly
relevant to central topics of ion channel problems. The talk is based on works with
several collaborators.
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OUTLINE

Part I: Background, models, and a specific GSP

– Ion channel problems and Poisson-Nernst-Planck (PNP) models

– A general framework of GSP + Special structures of PNP

=⇒ Singular orbits involving ALL physical parameters of the problem

Part II: A number of specific applications

– Reversal (Nernst) potential and reversal permanent charge

– Effects of permanent charges and channel shape

– Ion size effects via PNP w/ Hard-Sphere potentials
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Part I

1. Ion channel structures: shape and permanent charge

Ion channel functions: ionic flow and Poisson-Nernst-Planck models

2. A framework for analyzing PNP systems

– General theory of geometric singular perturbations (GSP)

– Special structures of PNP (most important ingredients for concrete information)

– Matching: yields (local) double-layers and brings (global) BC into picture

– Governing systems for singular orbits of BVP of PNP
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1. Ion channel, ionic flow, PNP model
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Figure 1: What Are Ion Channels: Shape and Permanent Charge
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1.1. A quasi-one-dim PNP model for ionic flows of n types of ion species:

Poisson:
1

h(x)

d

dx

(
ε2h(x)

dφ

dx

)
= −e

(∑
zscs +Q(x)

)
,

Nernst-Planck:
dJj
dx

= 0, −Jj =
1

kBT
Djh(x)cj

dµj
dx

.

BV: φ(0) = V, cj(0) = Lj; φ(1) = 0, cj(1) = Rj.

φ–electric potential, ε2–dielectric, h(x)–area over x, Q(x)–permanent charge

cj – concentration, Jj – flux density, zj – valence, Dj – diffusion constant,

Electrochemical potential: µj(φ, {ci}) = µidj + µexj :

Ideal component µidj = zjeφ+ kBT ln cj; Excess potential µexj for ion size.

A key quantity: Current-Voltage (I-V) relation I =
∑
zjJj(V;L,R).
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1.2 A brief background

– Nernst; Planck (1890s):

∗ Nernst-Planck equation (study delayed due to lack of experimental data?)
∗ Nernst equation for Reversal Potential (Goldman-Hodgkin-Katz equation)

– Gouy-Chapmann (1910s); O. Stern (1924): Double layer phenomena

– Debye-Hückel; Lars Onsager (1920s):

∗ Electrolytic solutions based on Poisson-Boltzmann approximations
∗ Corrected to some extent by Lars Onsager when he was less than 22.

– Hodgkin-Huxley (1952a-e):

∗ “Voltage-Clamp” technique for recording action potentials in the squid giant
axon (single cell w/ a population of channels)
∗ Hodgkin-Huxley’s phenomenological model describes how action potentials

in neurons are initiated and propagated

– Katz-Miledi, Neher-Sakmann (1970s): Single-channel recording of current

– · · · · · ·:
∗ permeation, selectivity, gating, layering, charge inversion, conductivity, etc.
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2. GSP for cPNP w/ piecewise constant Q(x): [Liu JDE 09]
2.1. Reformulate BVP to a connecting problem (after a rescaling)

Introduce u = εφ̇ and w = x. cPNP becomes, for k = 1, 2, · · · , n,

εφ̇ = u, εu̇ = −
n∑
s=1

zscs −Q(w)− εh
′(w)

h(w)
u,

εċk = −zkcku− εJkh−1(w), J̇ = 0, ẇ = 1.

Associated to boundary conditions, introduce

BL = {(φ, u, C, J, w) ∈ R2n+3 : φ = V, C = L, w = 0},
BR = {(φ, u, C, J, w) ∈ R2n+3 : φ = 0, C = R, w = 1}.

BVP ⇐⇒ A connecting orbit from BL to BR.
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2.2. Construction of Singular Orbits over [0, 1].

Pre-assign the values of φ, ck’s at jump point xj of Q(x) for j = 1, 2, · · · ,m− 1,

φ(xj) = φ[j], ck(xj) = c
[j]
k , k = 1, 2, · · · , n (1)

with given φ[0] = V and c
[0]
k = Lk at x0 = 0, φ[m] = 0 and c

[m]
k = Rk at xm = 1,

and introduce the set, for j = 0, 1, · · · ,m,

Bj = {(φ, u, C, J, w) : φ = φ[j], C = C [j], w = xj}. (2)

Two main steps for a construction of a singular orbits over [0, 1]

- Singular orbits on [xj−1, xj] between Bj−1 and Bj with Q(x) = Qj.

- Matching them at jump points x = xj’s to form a singular orbit on [0, 1].
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2.2.1. Singular orbit over [xj−1, xj] between Bj−1 and Bj with Q(x) = Qj.

Each such an orbit will consist of two singular layers Γ[j−1,r] at x = xj−1,

and Γ[j,l] at x = xj, and a regular layer Λj over the interval [xj−1, xj].
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– Fast dynamics and bdry/internal layers.

The slow manifold is Zj = {u = 0,
∑n
s=1 zscs +Qj = 0} .

Note that dimZj = 2n+ 1 – co-dim two.

In terms of the independent variable ξ = x/ε, we obtain the fast system,

φ′ = u, u′ = −
n∑
s=1

zscs −Qj − ε
h′(w)

h(w)
u,

c′k = −zkcku− εJkh−1(w), J ′ = 0, w′ = ε.

The limiting fast system is, for k = 1, 2, · · · , n,

φ′ = u, u′ = −
n∑
s=1

zscs −Qj,

c′k = −zkcku, J ′ = 0, w′ = 0.

Two e-values normal to Zj are ±
√∑

z2scs (Debye length)−1 =⇒ Zj is NH.
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Special structure of the limiting fast system:

Proposition. The limiting fast system has a complete set of (2n+2) first integrals
given by, for k = 1, 2, · · · , n,

Gk = ln ck + zkφ, Gn+1 =
1

2
u2 −

n∑
s=1

cs +Qjφ,

Gn+1+k = Jk and G2n+2 = w.

Consequences:

One can determine u[j−1,+] and u[j,−], and ω(Bj−1) and α(Bj) up to J .
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– Slow dynamics to connect ω(Bj−1) and α(Bj).

Introduce u = εp, zncn = −
∑n−1
s=1 zscs −Qj − εq.

In replacing u with p and cn with q, slow system becomes, for k = 1, · · · , n− 1,

φ̇ = p, εṗ = q − εh
′(w)

h(w)
p,

εq̇ =
( n−1∑
s=1

(zs − zn)zscs − znQj − εznq
)
p+ h−1(w)

n∑
s=1

zsJs,

ċk = −zkpck − Jkh−1(w), J̇ = 0, ẇ = 1.

When ε = 0, it is

φ̇ = p, 0 = q,

0 =
( n−1∑
s=1

(zs − zn)zscs − znQj
)
p+ h−1(w)

n∑
s=1

zsJs,

ċk = −zkpck − Jkh−1(w), J̇ = 0, ẇ = 1.
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For this system, the slow manifold is

Sj =

{
p = −

h−1(w)
∑n
s=1 zsJs∑n−1

s=1 (zs − zn)zscs − znQj
, q = 0

}
.

The limiting slow dynamics on Sj is, with I =
∑n
s=1 zsJs,

φ̇ = − h−1(w)I∑n−1
s=1 (zs − zn)zscs − znQj

,

ċk =
h−1(w)I∑n−1

s=1 (zs − zn)zscs − znQj
zkck − h−1(w)Jk,

J̇ = 0, ẇ = 1.

Special structure of limiting slow dynamics: On slow manifold Sj,

n−1∑
s=1

zscs +Qj = −zncn =⇒
n−1∑
s=1

(zs − zn)zscs − znQj =

n∑
s=1

z2scs > 0.
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Multiply h(w)
∑n
s=1 z

2
scs on the RHS to get

d

dτ
φ = −I, d

dτ
C = D(J)C,

n∑
s=1

zscs +Qj = 0,

d

dτ
J = 0,

d

dτ
w = h(w)

n∑
s=1

z2scs,

where D(J) = Γ− JbT with Γ = I diag(z1, · · · , zn) and bT = (z21, · · · , z2n).

Solving this system from ω(Bj−1) to α(Bj), one gets J [j] over [xj−1, xj].

2.2.2. Global matching: u[j,−] = u[j,+] and J [1] = J [2] = · · · = J [m].

m− 1 + n(m− 1) = (n+ 1)(m− 1) = the number of preassigned unknowns.

The result gives the governing system for singular orbits of the BVP.

Theorem [L-Xu JDE 15]. For Q = 0 and general n, there is a unique solution.
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From Eisenberg-L. 07 SIMA for n = 2 and three-piece-one-nonzero Q:

z1c
a
1e
z1(φ

a−φa,m)
+ z2c

a
2e
z2(φ

a−φa,m)
+Q = 0,

z1c
b
1e
z1(φ

b−φb,m)
+ z2c

b
2e
z2(φ

b−φb,m)
+Q = 0,

z2 − z1
z2

c
a,l
1 = c

a
1e
z1(φ

a−φa,m)
+ c

a
2e
z2(φ

a−φa,m)
+Q(φ

a − φa,m),

z2 − z1
z2

c
b,r
1 = c

b
1e
z1(φ

b−φb,m)
+ c

b
2e
z2(φ

b−φb,m)
+Q(φ

b − φb,m),

J1 =
cL1 − c

a,l
1

H(a)

(
1 +

z1(φ
L − φa,l)

ln cL1 − ln ca,l1

)
=

cb,r1 − c
R
1

H(1)−H(b)

(
1 +

z1(φ
b,r − φR)

ln cb,r1 − ln cR1

)
,

J2 =
cL2 − c

a,l
2

H(a)

(
1 +

z2(φ
L − φa,l)

ln cL2 − ln ca,l2

)
=

cb,r2 − c
R
2

H(1)−H(b)

(
1 +

z2(φ
b,r − φR)

ln cb,r2 − ln cR2

)
,

φ
b,m

= φ
a,m − (z1J1 + z2J2)y,

c
b,m
1 = e

z1z2(J1+J2)yc
a,m
1 −

QJ1

z1(J1 + J2)

(
1− ez1z2(J1+J2)y

)
,

J1 + J2 = −
(z1 − z2)(ca,m1 − cb,m1 ) + z2Q(φa,m − φb,m)

z2(H(b)−H(a))
.

17



Part II

1. Reversal potential and reversal permanent charge

2. Effects of permanent charges and channel geometry

3. Ion size effects via PNP w/ Hard-Sphere potentials
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1. Reversal charge and potential: Eisenberg-L.-Xu (Nonlinearity 15)

- From NP: Jk

∫ 1

0

1

h(x)Dkck(x)
dx = µk(0)− µk(1) =

e

kBT
zkV0 + ln

Lk
Rk

.

The sign of Jk is determined by bdry electrochemical potentials.

Permanent charges cannot do anything about the sign of Jk BUT

do affect the magnitude of Jk.

Can Q(x) change the sign of I =
∑
zkJk ?.

- Reversal permanent charge Q is defined to be the one that makes I = 0.

- Reversal potential V0 is defined to be the one that makes I = 0.

- Consider Q(x) = Q∗ for x ∈ [x1, x2] and Q(x) = 0 for x 6∈ [x1, x2].
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Let g(V,V0) :=

n∑
s=1

zs(Lse
zsV0 −Rs)

1− x2 + x1ezsV0 + (x2 − x1)ezsV
.

Theorem. (i) Fix V0. If V ∗ is a real root of g(V,V0) = 0, then

Q∗ = f(V,V0) := −
n∑
s=1

zse
zs(V0−V ∗)[1− x2 + (x2 − x1)ezsV

∗
]Ls + x1Rs

1− x2 + x1ezsV0 + (x2 − x1)ezsV ∗
,

is a reversal permanent charge.

(ii) Fix Q∗. There is a unique solution (V,V0) of the system

g(V,V0) = 0 and f(V,V0) = Q∗,

and the corresponding V0 is the reversal (Nernst) potential.
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Theorem. (i) For n = 2, ∃ a reversal charge Q∗ if and only if

(L1e
z1V0 −R1)(L2e

z2V0 −R2) > 0.

If exists, the reversal charge Q∗ is unique.

(ii) For n = 3 with z1 = 1, z2 = 2 and z3 = −1, and for some bdry conditions,

there are at least TWO reversal permanent charges.

Theorem. For n = 2 with z1 = 1 = −z2 (Lj = L and Rj = R).

For some (V0, L,R), the reversal permanent charge Q∗ exists and

J1(0) > J2(0) > J1(Q
∗) = J2(Q

∗).

[Somewhat counterintuitive, if not, nobody seems to know before.]
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2. Effects of small Q(x) and channel geometry: Ji-L.-Zhang SIAP 15
Consider Q(x) = Q0 over [x1, x2] w/ n = 2;

Electroneutrality: z1L1 = −z2L2 = L and z1R1 = −z2R2 = R.

Jk(Q0, ε) = Jk0 + Jk1Q0 +O(ε,Q2
0).

2.1. Effects of channel geometry on fluxes of zeroth order in Q0

J10 =
L−R

z1H(1)(lnL− lnR)
µδ1, J20 =

R− L
z2H(1)(lnL− lnR)

µδ2;

µδk := µk(0)− µk(1) = zkV0 + lnL− lnR and H(1) =

∫ 1

0

A−1(x)dx.

J10 doesn’t depend on 2nd ion species and J20 doesn’t depend on 1st ion species.

Effects of channel geometry for zeroth order in Q0 are simple.
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2.2. Effects of Q(x) and channel geometry on 1st order fluxes

J11 =
A(µδ2 − z2BV )

(z1 − z2)H(1)(lnL− lnR)2
µδ1,

J21 =
A(µδ1 − z1BV )

(z2 − z1)H(1)(lnL− lnR)2
µδ2,

where, in terms of α = H(x1)/H(1) and β = H(x2)/H(1),

A = A(L,R) = − (β − α)(L−R)2

((1− α)L+ αR)((1− β)L+ βR)(lnL− lnR)
,

B = B(L,R) =
ln((1− β)L+ βR)− ln((1− α)L+ αR)

A
.

J11 depends on 2nd ion species and J20 depends on 1st ion species.

More detailed channel geometry presents in 1st order Jk1.

23



2.2.1. Channel geometry for optimal permanent charge effects on fluxes

Theorem. |J11| and |J21| attain their maximums for (α, β) = (0, 1).

Recall that α = H(x1)/H(1), β = H(x2)/H(1), H(x) =
∫ x
0
h−1(s)ds.

Striking Consequences

A short and narrow neck “ > ” A long and wide neck.

Short and Narrow : x2 − x1 � 1 and h(x) is much smaller for x ∈ (x1, x2).

Long and Wide: x2 − x1 ≈ 1 and h(x) is more uniform with more charges

Ion channels prefer short and narrow necks.
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2.2.2. Charge effects on fluxes of positively charged and negatively charged ions

For t > 0, set

γ(t) =
t ln t− t+ 1

(t− 1) ln t
.

Lemma. For t > 0, 0 < γ(t) < 1, γ′(t) > 0, γ(t) + γ(1/t) = 1,

lim
t→0

γ(t) = 0, lim
t→1

γ(t) = 1/2, lim
t→∞

γ(t) = 1.
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Theorem. Let V 1
q and V 2

q be as

V 1
q = V 1

q (L,R) = −lnL− lnR

z2(1−B)
and V 2

q = V 2
q (L,R) = −lnL− lnR

z1(1−B)
.

Then, for t = L/R > 1, one has

(i) if α < γ(t) and β ∈ (α, β1), then V 1
q < 0 < V 2

q ; and,

(i1) for V ∈ (V 1
q , V

2
q ), small positive Q0 reduces both |J1| and |J2|;

(i2) for V < V 1
q , small positive Q0 strengthens |J1| but reduces |J2|;

(i3) for V > V 2
q , small positive Q0 reduces |J1| but strengthens |J2|;

(ii) if either α < γ(t) and β ∈ (β1, 1) or α ≥ γ(t), then V 1
q > 0 > V 2

q ; and,

(ii1) for V ∈ (V 2
q , V

1
q ), small positive Q0 strengthens both |J1| and |J2|;

(ii2) for V > V 1
q , small positive Q0 strengthens |J1| but reduces |J2|;

(ii3) for V < V 2
q , small positive Q0 reduces |J1| but strengthens |J2|.

SMALL positive permanent charge can do anything but strengthening the flux
of positively charged ions while reducing that of negatively charged ions.
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In general, for k = 1, 2 with z1 > 0 > z2, set λk(Q, ε) =
Jk(Q, ε)

Jk(0, ε)
.

Since Q does not change the sign of Jk(Q, ε), one has λk(Q, ε) > 0.

If λk(Q, ε) > 1, then |Jk(Q, ε)| > |Jk(0, ε)|; that is,

the flux Jk is strengthened by the permanent charge Q.

Theorem. For positive permanent charge Q(x), one has, for ε > 0 small,

λ2(Q, ε) > λ1(Q, ε) — A Universal Effect

and each of the following is possible:

(i) λ2(Q, ε) > 1 > λ1(Q, ε);

(ii) λ2(Q, ε) > λ1(Q, ε) > 1;

(iii) 1 > λ2(Q, ε) > λ1(Q, ε).
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Corollary. Given a positive permanent charge Q(x), it is possible that

(i) the flux of anion is enhanced while that of cation is reduced;

(ii) the fluxes of both anion and cation are enhanced and, in this case,

J2(Q)− J2(0)

J2(0)
>
J1(Q)− J1(0)

J1(0)
> 0,

i.e, the relative amount of flux increased for anion is greater than that for cation;

(iii) the fluxes of both anion and cation are reduced and, in this case,

0 <
J2(0)− J2(Q)

J2(0)
<
J1(0)− J1(Q)

J1(0)
,

i.e., the relative amount of flux reduced for anion is smaller than that for cation.
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3. PNP with hard-sphere potentials (HS)

3.1. Why do we care about ion sizes

Serious weakness of cPNP: treating Na+ = K+

In real world, Na+ 6= K+ significantly

Key difference: Na+ < K+ in ion size

Na+-channels v.s. K+-channels - (Protein Structure: MacKinnon 2003 Nobel)

Excess potential µexi accounts for finite size of ions
to distinguish ions with same valence but different sizes.
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3.2. A one-dim non-local HS potential µHSj

Percus-Yevick (70s) and Rosenfeld (93) model: (exact)

µHSj =
δΩ({ci})
δcj

,

where Ω({ci}) = −
∫
n0(x; {ci}) ln(1− n1(x; {ci}))dx,

nl(x; {ci}) =
∑
i

∫
ci(x

′)ωil(x− x′)dx′, l = 0, 1

ωi0(x) =
δ(x− ri) + δ(x+ ri)

2
, ωi1(x) = Θ(ri − |x|).

δ: Dirac function; Θ: Heaviside function; ri: radius of ith ions.

Statistical mechanics and geometric measurements of objects
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3.3. A local HS potential µLHSj for 3-dim

Bikerman’s model (42):

µLHSj (x) = − ln
(

1− 4π

3

∑
i

r3i ci(x)
)
− not ion specific.

Many refined models · · · · · ·

Boublik-Mansoori-Carnahan-Starling-Leland model (70-71):

Very accurate and more sophisticate, up to lowest order in radii,

µLHSj (x) = 8
∑
i

(rj + ri)
3ci(x) +O(r6)− ion specific.
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Quasi-one-dim’l PNP with HS potential

1

h(x)

d

dx

(
ε2h(x)

dφ

dx

)
= −

n∑
s=1

zscs −Q(x),

dJj
dx

= 0, −Jj = Djh(x)
(dcj
dx

+ zjcj
dφ

dx
+ cj

dµHSj
dx

)

with the boundary conditions

φ(0) = V, cj(0) = Lj; φ(1) = 0, cj(1) = Rj.
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3.4. Electroneutrality, n = 2: L := z1L1 = −z2L2, R := z1R1 = −z2R2

Ji-L. JDDE 12 (for PNP w/ 1d nonlocal HS & Q = 0)

Lin-L.-Yi-Zhang SIADS 13 (for PNP w/ 1d local HS & Q = 0)

Let r = r1 (ionic radius of 1st ion species) and λ = r2/r1, and let

Vc =
(λ− 1)(L−R)(lnL− lnR)

(z1λ− z2)((L+R)(lnL− lnR)− 2(L−R))

− (D1 −D2)(L+R)(lnL− lnR)2

(z1D1 − z2D2)((L+R)(lnL− lnR)− 2(L−R))
;

V c =
(L−R)(lnL− lnR)

z1((L+R)(lnL− lnR)− 2(L−R))

− (D1 −D2)(L+R)(lnL− lnR)2

(z1D1 − z2D2)((L+R)(lnL− lnR)− 2(L−R))
.
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Theorem. [Size-Balance-Voltage Vc]

For ε > 0 small and r > 0 small,

(i) if V > Vc, then ion sizes enhance current: I(V ; ε, r) > I(V ; ε, 0);

(ii) if V < Vc, then ion sizes reduce current: I(V ; ε, r) < I(V ; ε, 0).

Theorem. [Size-Selectivity-Voltage V c – independent of λ]

For ε > 0 small and r > 0 small,

(i) if V > V c, the current I is increasing in λ

(smaller positive ion species is ‘preferred’, say, Na+ over K+);

(ii) if V < V c, the current I is decreasing in λ

(larger positive ion species is ‘preferred’, say, K+ over Na+).
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Scaling Properties in Boundary Concentrations

Write I(V ; ε, r) = I0(V ; ε) + I1(V ; ε)r + o(r).

I0(V ; 0) = I0(V ;Lj, Rj) – point-charge contribution;

I1(V ; 0) = I1(V ;Lj, Rj) – ion size component;

Vc = Vc(Lj, Rj), V c = V c(Lj, Rj) – two critical voltages.

Theorem. [Scaling Laws in Bdry Concentrations]

(i) I0 scales linearly in (Lj, Rj): I0(V ;σLj, σRj) = σI0(V ;Lj, Rj);

(ii) I1 scales quadratically in (Lj, Rj): I1(V ;σLj, σRj) = σ2I1(V ;Lj, Rj);

(iii) Vc and V c scale invariantly in (Lj, Rj): V cc (σLj, σRj) = V cc (Lj, Rj).

Many other important applications of GSP to PNP to Ion channel problems !!!

35



Thank You !
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