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Abstract

lon channel problems concern macroscopic properties of ionic flow through nano-
scale ion channels. It is no coincidence that singularly perturbed systems serve as
suitable models for analyzing these multi-scale problems. The general framework of
singular perturbations often reveals special structures (idealized physical situations)
of multi-scale phenomena and allows one to extract concrete information for specific

problems. This is the case for the Poisson-Nernst-Plank (PNP) systems as primitive
models for ionic flows.

In this talk, we will describe the geometric singular perturbation framework for
an analysis of PNP systems and report a number of concrete results that are directly

relevant to central topics of ion channel problems. The talk is based on works with
several collaborators.



OUTLINE

Part |: Background, models, and a specific GSP

— lon channel problems and Poisson-Nernst-Planck (PNP) models

— A general framework of GSP + Special structures of PNP

— Singular orbits involving ALL physical parameters of the problem

Part Il: A number of specific applications

— Reversal (Nernst) potential and reversal permanent charge
— Effects of permanent charges and channel shape

— lon size effects via PNP w/ Hard-Sphere potentials



1.

2.

Part |

lon channel structures: shape and permanent charge

lon channel functions: 1onic flow and Poisson-Nernst-Planck models

A framework for analyzing PNP systems

General theory of geometric singular perturbations (GSP)

Special structures of PNP (most important ingredients for concrete information)

Matching: yields (local) double-layers and brings (global) BC into picture
Governing systems for singular orbits of BVP of PNP



1. lon channel, ionic flow, PNP model
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Figure 1: What Are lon Channels: Shape and Permanent Charge



1.1. A quasi-one-dim PNP model for ionic flows of n types of ion species:

_ 1 d d
Poisson: hz )dx( h(x )di> —6(22803—1—@(33))»

Nernst-Planck: d—xj =0, —J;= kB—TD h(z)e; dxj

BV: 6(0)=V, ¢;(0)=L;i (1) =0, ¢;(1) = R;.

¢—electric potential, e?—dielectric, h(x)—area over x, Q(x)—permanent charge

c; — concentration, J; — flux density, z; — valence, D, — diffusion constant,

Electrochemical potential: ju;(¢, {¢i}) = pl® + ps™:

|deal component ,u = zje¢ + kpT Inc;; Excess potential p5* for ion size.

A key quantity: Current-Voltage (I-V) relation Z = >_ z,;J,;(V; L, R).



1.2 A brief background

— Nernst; Planck (1890s):

+ Nernst-Planck equation (study delayed due to lack of experimental data?)
* Nernst equation for Reversal Potential (Goldman-Hodgkin-Katz equation)

— Gouy-Chapmann (1910s); O. Stern (1924): Double layer phenomena
— Debye-Hiickel; Lars Onsager (1920s):

x Electrolytic solutions based on Poisson-Boltzmann approximations
x Corrected to some extent by Lars Onsager when he was less than 22.

— Hodgkin-Huxley (1952a-e):

x "Voltage-Clamp” technique for recording action potentials in the squid giant
axon (single cell w/ a population of channels)

x Hodgkin-Huxley's phenomenological model describes how action potentials
in neurons are initiated and propagated

— Katz-Miledi, Neher-Sakmann (1970s): Single-channel recording of current

x permeation, selectivity, gating, layering, charge inversion, conductivity, etc.



2. GSP for cPNP w/ piecewise constant Q(x): |Liu JDE 09|

2.1. Reformulate BVP to a connecting problem (after a rescaling)

Introduce u = scb and w = x. cPNP becomes, for k =1,2,---,n,
: " X
ep=u, €eU=— ; zsCs — Q(w) — € h((;lj))u,
ECL = —Z1CLU — sth_l(w), J = 0, w=1.

Associated to boundary conditions, introduce

Br, = {(¢,u,C,J,w) e R : =V, C =L, w=0},
Br={(¢,u,C,Jw) e R . =0, C =R, w=1}.

BVP <= A connecting orbit from By, to Bg.



2.2. Construction of Singular Orbits over [0, 1].
Pre-assign the values of ¢, ci's at jump point x; of Q(x) for j =1,2,---,m —1,
o(z;) :¢[j]a Ck(xj)zcl[cj]v k=1,2,---,n (1)

with given ¢l =V and C,LO] = L, at 29 =0, ¢/™ =0 and C,Lm] = Ry at x,, = 1,
and introduce the set, for ; =0,1,---,m,

B = {(¢,u,C, Jw): ¢=¢V, C =0Vl w=uz, (2)

Two main steps for a construction of a singular orbits over |0, 1]
- Singular orbits on [x;_1,x;| between B;_; and B; with Q(z) = Q).

- Matching them at jump points z = ;s to form a singular orbit on |0, 1].
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2.2.1. Singular orbit over [z;_1, ;] between B;_; and B; with Q(z) = Q.

j—]_,?"]

Each such an orbit will consist of two singular layers T’ at x = x;_1,

and T4 at = z;, and a regular layer A; over the interval [x;_1,x;].
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Figure 3: Singular orbit over [z, _1, x;]
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— Fast dynamics and bdry/internal layers.
The slow manifold is Z; = {u =0, >.._, zs¢s + Q; =0} .
Note that dim Z; = 2n + 1 — co-dim two.

In terms of the independent variable £ = x /¢, we obtain the fast system,

- h(w)
¢ =u, U= _;zscs — @ —sh(w)u,
), = —zpcpu — eJyh H(w), J =0, w =e.

The limiting fast system is, for k =1,2,---,n,

n

¢/:U, u/:_ZZSCS_Qj7

s=1

¢, = —zpcpu, J' =0, w =0.

Two e-values normal to Z; are ++/> 22¢c, (Debye length)™! = Z; is NH.



Special structure of the limiting fast system:

Proposition. The limiting fast system has a complete set of (2n -+ 2) first integrals
given by, fork =1,2,---,n,

n

1

Gk = In Ck + Zk¢7 Gn—|—1 — 5“2 — Z Cs T QJ¢7

s=1

Gn—l—l—i—k = Jk and G2n+2 = w.

Consequences:

One can determine ul/ =%+ and ul»~! and w(B;_1) and a(B;) up to J.
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— Slow dynamics to connect w(B;_1) and a(Bj).

Introduce u = ep, 2,Cp = — Z;:ll zsCs — Q — €q.
In replacing u with p and ¢,, with g, slow system becomes, for k=1,---,n —1,
- . W (w)
— s Ep—=4q — ¢ )
¢=p, ep=¢q h(w)?
n—1 n
£4 = ( Z<Z$ — 2n)2sCs — ZnQj — eznq)p + h_l(w) Z Zeds,
s=1 s=1

Cr, = —ZLPCL — th_l(w), J = 0, w=1.

When € =0, it is

¢::Z% Oz:Qa
n—1 n
= (Y2 2n)zacs — Qg )p+ A7 M W) Y 2,
s=1 s=1
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For this system, the slow manifold is

S' —<p=-— h_l(w) Zgzl ZSJS q = 0\,
’ Z?;ll(zs — Zn)zscs - Zan7

The limiting slow dynamics on S; is, with Z =Y z.J;,

¢E _ h_1<w)I
Zg;ll(zs — Zn)zscs — anj’
, h=1(w)Z _
Ci — 1 ( ) ZkCl — h 1(w)Jk,
Zszl (ZS o Zn)zSCS - ZTLQ]
J=0, w=1.

Special structure of limiting slow dynamics: On slow manifold S,

n—1 n

n—1
Z 2sCs + Qj = —2nCp = Z(ZS — 2n)2sCs — 2nQj = zfcs > 0.
s=1

s=1 s=1



Multiply h(w) >""_, z5cs on the RHS to get

S

d d -

—$b=-T. —C =D =
d7'¢ ) dTO ('])Ca Sz:; zier _|_ Q] 07
d d —

EJ = 0, W= h(w) 2 zZcs,

where D(J) =T — Jb! with ' = Z diag(21, -+, 2,) and b1 = (2%, -+, 22).

Solving this system from w(B;_1) to a(B;), one gets JUl over [x; 1, x;].

2.2.2. Global matching: ul—! = ¢litl and JIH = JB = ... = jlml

m—14+n(m—1)=(n+1)(m — 1) = the number of preassigned unknowns.

The result gives the governing system for singular orbits of the BVP.

Theorem |L-Xu JDE 15|. For @ = 0 and general n, there is a unique solution.
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From Eisenberg-L. 07 SIMA for n = 2 and three-piece-one-nonzero Q:
Zlc‘llezl(¢a_¢a’m) + Z2636z2(¢a_¢a,m) + Q — O,
b _ .bm b_.bm
Zlcliezl(ﬁb —¢ ) + chg€z2(¢ @ ) + Q — 0,

£2 T A1 al e x1(e0 =0

o= cle ) 4 c2e2 TN L Q" — ™™,

Z92

Cl,r — Clezl(¢ ® )_l_ C2622(¢ ® )_I_ Q(¢ _ ¢ m),

Z2
g oo (1 I W)) _ e (1 LA - qu))
H(a) In clL — In cff’l H(1) — H(b) In cli’r — In cf ,

L a,l L l b,r R b,r R
_ G T & z22(7 — ")\ _ & — z2(97" — @)
"= <1 " “’l> - H(1) — H(b) <1 " )

L br R
In cy — In Cy In Cy In Ccs

""" = ™" — (211 + 2002)y,

Cli,m _ pA122(J1t+ o)y am QJ1 (1 _ 621z2(J1+J2)y> ,
z1(J1 + J2)
a,m b,m a,m b,m
Jl_I_Jz:_(Zl—Zz)(Cl —c;) + 2Q(0"" — ¢ )

z2(H(b) — H(a))
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Part |l

1. Reversal potential and reversal permanent charge
2. Effects of permanent charges and channel geometry

3. lon size effects via PNP w/ Hard-Sphere potentials
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1. Reversal charge and potential: Eisenberg-L.-Xu (Nonlinearity 15)

1
1 € Lk
- From NP: J de = g (0) — (1) = Vo +In =
om ¢ /0 h(@) Dren(a) % = #el0) = ) = ompaVo - In

The sign of J is determined by bdry electrochemical potentials.

Permanent charges cannot do anything about the sign of J, BUT

do affect the magnitude of Jy.

Can Q(x) change the sign of 7 = > zxJi 7.

- Reversal permanent charge () is defined to be the one that makes 7 = 0.

- Reversal potential V) is defined to be the one that makes 7 = 0.

- Consider Q(z) = Q* for x € [x1,x3] and Q(x) = 0 for = & [x1, z2].

19



n

Let  g(V, Vo) =)

s=1

zs(Lge*Y0 — R,)
1 — 2o + x1€#Y0 4+ (x9 — 21)e%V

Theorem. (i) Fix Vy. If V* is a real root of g(V,Vy) = 0, then

n

Q" = f(V. Vo) i=—) 2z

s=1

2s(Vo—V™) [1 — Tg + (xg — a:l)eZSV*]LS + 11 R,
1l — a9+ ZUlez*SVO + (513’2 — $1)€Z5V* ’

Is a reversal permanent charge.

(ii) Fix Q*. There is a unique solution (V,Vy) of the system
g(V7 VO) =0 and f(V7 VO) — Q*7

and the corresponding V) is the reversal (Nernst) potential.
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Theorem. (i) For n =2, 3 a reversal charge Q* if and only if
(L1e*1Y0 — Ry)(L9e*2Y — Ry) > 0.

If exists, the reversal charge (Q* is unique.

(i) Forn =3 with z1 =1, zo = 2 and z3 = —1, and for some bdry conditions,

there are at least TWO reversal permanent charges.

Theorem. Forn =2 withz; =1= —2y (L =L and R; = R).

For some (Vy, L, R), the reversal permanent charge QQ* exists and

J1(0) > J2(0) > J1(Q") = J2(Q7).

|Somewhat counterintuitive, if not, nobody seems to know before. |
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2. Effects of small Q(x) and channel geometry: Ji-L.-Zhang SIAP 15

Consider Q(x) = Qo over [x1,x3] W/ n = 2;

Electroneutrality: z1L1 = —29Lo = L and z1R1 = —29Rs = R.

Ji(Qo,e) = Jro + Jk1Qo + O(e, Q2).

2.1. Effects of channel geometry on fluxes of zeroth order in Qg

B L—-R
- z1H(1)(InL —InR)

R—-L

J —
0 2H(1)(In L — In R)

) J.
©ni,  J2o 125X

1
19 = pp(0) — ur(1) = 2z5Vo+InL —InR and H(1) = / A (z)dz.
0

J1o doesn’t depend on 2nd ion species and Jog doesn’t depend on 1st ion species.

Effects of channel geometry for zeroth order in Qg are simple.
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2.2. Effects of Q(x) and channel geometry on 1st order fluxes

A(py — 22BV) 5
(21 — 20)H(1)(In L — In R)Q'ul’

A(pg — z1BV)
(22— 2z1)H(1)(InL — In R)

Ji1 =

5
Ja1 = 512

where, in terms of « = H(x1)/H(1) and 8 = H(x2)/H (1),

_ _ (8 —a)(L — R)?
A=ALR) = A =L T aR((1 - AL+ fR)InL —mR)’
B = B(L.R) - In((1—-8)L+ BR) —In((1 —«a)L -|—OéR).

A

J11 depends on 2nd ion species and Jog depends on 1st ion species.

More detailed channel geometry presents in 1st order Jgq.
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2.2.1. Channel geometry for optimal permanent charge effects on fluxes
Theorem. |Jy1| and |J21]| attain their maximums for (o, ) = (0, 1).
Recall that o = H(z1)/H (1), 8 = H(z2)/H(1), H(z) = [, h™'(s)ds.

Striking Consequences

A short and narrow neck “ > " A long and wide neck.

Short and Narrow : x5 — x1 < 1 and h(x) is much smaller for x € (z1,x2).

Long and Wide: z2 — z1 =~ 1 and h(z) is more uniform with more charges

lon channels prefer short and narrow necks.
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2.2.2. Charge effects on fluxes of positively charged and negatively charged ions

For t > 0, set
_tbt—t+1

V(E) = (t—1)Int

Lemma. Fort >0,0<~(t) <1, +(t) >0, ~(t)+~v(1/t) =1,

lim~(t) =0, lim~vy(t)=1/2, lim ~(¢t)=1.

t—0 t—1 t—o0
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Theorem. Let Vq1 and Vq2 be as

InL —InR
Zg(l — B)

InL —InR
21(1 — B) .

1 1 2 2 _
Vl=VNL,R) = - and V2 =V2(L,R) = —

Then, fort = L/R > 1, one has

(i) if o« <~(t) and § € (o, B1), then V! <0 < V2, and,

(i1) for Ve (V.},V.2), small positive Qq reduces both |J1| and |.Ja|;
(i2) forV < V? small positive (QQy strengthens |J1| but reduces |Js|;
(i3) for V > V2 small positive QQg reduces |J1| but strengthens |Js|;

(ii) if either a < ~y(t) and 8 € (B1,1) or a > 7(t), then V! >0 > V2 and,

(iil) for V e (V; V.}), small positive Qg strengthens both |.J1| and |.J2|;
(ii2) for V>V, small positive Qg strengthens |J1| but reduces |Js|;
(ii3) forV < V2 small positive Qg reduces |Jy| but strengthens |.Js|.

SMALL positive permanent charge can do anything but strengthening the flux
of positively charged ions while reducing that of negatively charged ions.
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Jk(Qv 5)
Jk(O, E) .

In general, for k = 1,2 with 21 > 0> 25, set A\ (Q,¢) =
Since () does not change the sign of Ji(Q,¢), one has A\x(Q,e) > 0.
If A\i(Q,€) > 1, then |J(Q, )| > |Jx(0,¢)|; that is,
the flux Ji is strengthened by the permanent charge Q.
Theorem. For positive permanent charge QQ(x), one has, for ¢ > 0 small,

A (Q,e) > A\(Q,e) — A Universal Effect

and each of the following is possible:
(i) A2(Q,e) > 1> X (Q,¢);
(i) A2(Q,e) > M(Q,e) > 1;
(iii)) 1 > Xa(Q, €) > M (Q,€).

27



Corollary. Given a positive permanent charge QQ(x), it is possible that

(i) the flux of anion is enhanced while that of cation is reduced;

(ii) the fluxes of both anion and cation are enhanced and, in this case,

J2(Q) — J2(0) S J1(Q) — J1(0)
J2(0) J1(0)

> 0,

I.e, the relative amount of flux increased for anion is greater than that for cation;

(iii) the fluxes of both anion and cation are reduced and, in this case,

J2(0) — J2(Q) < J1(0) — J1(Q)
J2(0) J1(0) ’

0 <

I.e., the relative amount of flux reduced for anion is smaller than that for cation.
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3. PNP with hard-sphere potentials (HS)

3.1. Why do we care about ion sizes
Serious weakness of cPNP: treating Na™ = K+
In real world, Na™ # K significantly
Key difference: Na™ < KT in ion size

Na*t-channels v.s. KT-channels - (Protein Structure: MacKinnon 2003 Nobel)

Excess potential u$* accounts for finite size of ions

to distinguish ions with same valence but different sizes.

29



3.2. A one-dim non-local HS potential ufs

Percus-Yevick (70s) and Rosenfeld (93) model: (exact)

S 0 ({ci})
J 5Cj ’

where Q({c}) = — /no(a:; {ci}) In(1 — ny(z;{c;}))dx
x;{c;}) Z/CZ Nwi(x —2")dz', 1=0,1

ja) = AT i) = 00~ )

d: Dirac function; O: Heaviside function; 7;: radius of 7th ions.

Statistical mechanics and geometric measurements of objects
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3.3. A local HS potential ,uLHS for 3-dim

Bikerman's model (42):

4
,LLJLHS( )=—1In (1 — g Zr?cz(x)) — not ion specific.

Many refined models --- - - -

Boublik-Mansoori-Carnahan-Starling-Leland model (70-71):

Very accurate and more sophisticate, up to lowest order in radii,

LHS _ 3 Z ri +1i)%¢c;(z) + O(r®) — ion specific.
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Quasi-one-dim’l PNP with HS potential

1
dcj

dg

s () = =X me Q).
%:o, ~J; = Dih(x) (52

with the boundary conditions

dx

¢(0) =V, ¢(0) =Ly o(1)

+ 2iCj—— I -+ C;

dpits
o dx

)
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3.4. EleCtroneUtrality, n=2 L:= z1L1 = —29L9, R:= z1R1 = —29R>
Ji-L. JDDE 12 (for PNP w/ 1d nonlocal HS & @ = 0)

Lin-L.-Yi-Zhang SIADS 13 (for PNP w/ 1d local HS & @ = 0)

Let » = ry (ionic radius of 1st ion species) and A\ = ry/rq, and let

(A—1)(L - R)(InL — InR)

Ve= (21A — 22)((L+ R)(InL —InR) — 2(L — R))
(D1 — D2)(L + R)(InL — In R)? |
(21D1 — 29D2)((L + R)(In L —InR) — 2(L — R))’
e _ (L— R)(InL —InR)

- 21((L+R)(InL —InR)—-2(L — R))
(D1 — D2)(L + R)(InL — In R)?
(ZlDl — ZQDQ)((L + R)(lnL —In R) — 2(L — R))
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Theorem. |[Size-Balance-Voltage V|

For e > 0 small and r > 0 small

(i) if V> V,, then ion sizes enhance current: I(V;e,r) > I1(V;e,0);

(ii) if V< V., then ion sizes reduce current: 1(V;e,r) < I1(V;¢,0).

Theorem. |[Size-Selectivity-Voltage V¢ — independent of A

For e > 0 small and r > 0 small

(i) if V> V¢, the current I is increasing in \

(smaller positive ion species is ‘preferred’, say, Na©™ over K*);

(ii) if V< V¢, the current I is decreasing in A

(larger positive ion species is ‘preferred’, say, Kt over Na™).
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Scaling Properties in Boundary Concentrations
Write I(V;e,r) = Io(Vie) + I1(Vie)r + o(r).
Iy(V;0) = Iy(V; L, R;) — point-charge contribution;
I,(V;0) = I1(V; L;, R;) — ion size component;
Ve=V.(L;,R;), V¢=V¢L,, R;) - two critical voltages.
Theorem. |Scaling Laws in Bdry Concentrations|
(i) Iy scales linearly in (L;, R;): Io(V;0L;,0R;) = clo(V;Lj, Rj);
(i) I scales quadratically in (L, R;): I1(V;oL;,0R;) = 0*[,(V; L;, R;);

(iii) V. and V¢ scale invariantly in (L;, R;): VS(oL;,0R;) = VE(L;, R;).

Many other important applications of GSP to PNP to lon channel problems !!!
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Thank You |



