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Multiscale computation is a comprehensive topic, which has plenty of
applications in scientific engineering. From either macroscopical or
microscopic point of view, both have real disadvantages. In this way,
multiscale computation may provide bridges among those complicated
simulations.

Let N be the number of elements in each spatial direction, and let M be
the number of subcell elements, then there are a total of O(MdNd)(d is
the dimension) elements at the fine grid level in the finite element
method, which leads to too extremely huge system to solve on fine grid
size h = 1/(MN).

On the contrary, the multiscale finite element method only costs
O(Md +Nd), and it solves on coarse grid size H = 1/N . As a
consequence, it has great advantages and could be utilized in parallel
computers.
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There are kinds of multiscale computations in recent research:

Multiscale Finite Element Method(MsFEM);

Generalized Multiscale Finite Element Method(GMsFEM);

Heterogeneous Multiscale Method;

Upscaling Method;

Homogenization Method;

Variational Multiscale Method;

Multiscale Finite Volume Method;

Multiscale Discontinuous Galerkin Method, etc..
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Consider the 1D convection-diffusion model{
Lu := −εu′′(x) + bε(x)u′(x) + cε(x)u(x) = f(x), in x ∈ I = (0, 1),
k1u(0) + k2u

′(0) = uL, k3u(1) + k4u
′(1) = uR,

(1)
where u(x) is solution, bε(x), cε(x) are rapidly oscillatory coefficients.
And ki are different constants to represent different kinds of boundary
conditions, such as Dirichlet, Neumann, or Robin types.

The weak form of (1) is to seek u ∈ H1 such that

a(u, v) = (f, v), ∀v ∈ H1, (2)

where the bilinear form is

a(u, v) =

∫ 1

0

(εu′v′ + bε(x)u′v + cε(x)uv)dx, (3)

(f, v) =

∫ 1

0

fvdx. (4)
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Besides from the uniform grid, we build several special grids to adapt the
boundary layer information, which is according to a prior estimate. In the
case of ε is small, we take the transition point τ = min{ 1

2
, 2ε
β

lnN}, and
define the adapted grids with respect to the location of τ and integer λ.

Shishkin: xi =

{ 2τ
N
· (i− 1), i = 1, · · · , N

2
+ 1,

τ + 2(1−τ)
N
· (i− N

2
− 1), i = N

2
+ 2, · · · , N + 1.

(5)

Graded: xi =

{
2(1−τ)
N
· (i− 1), i = 1, · · · , N

2
+ 1,

1− τ( 2(N+1−i)
N

)λ, i = N
2

+ 2, · · · , N + 1.
(6)

Bakhvalov: xi =


−εln[1 + 4(1−N)(i−1)

N2 ], i = 1, · · · , N
4

+ 1,

τ + 2(1−2τ)
N

· (i− N
4
− 1), i = N

4
+ 2, · · · , 3N

4
+ 1,

1 + εln[1 + 4(1−N)(N+1−i)
N2 ], i = 3N

4
+ 2, · · · , N + 1.

(7)
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In the boundary layers, we solve the local problem for the multiscale
basis functions ϕi on each coarse element K,

{
Lϕi := −εϕ′′i (x) + bε(x)ϕ′i(x) + cε(x)ϕi(x) = 0, in K,
ϕi(xj) = δij , on ∂K.

(8)

Since the original problem (1) and local problem (8) have the same
differential operator, we solve it to obtain the boundary layer microscopic
information through the multiscale basis functions automatically.

As for the traditional finite element method, we take the linear basis
function ψi = 1− ξ, ψi+1 = ξ, where ξ = x−xi

hi
and hi = xi+1 − xi.
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uh = uiψi + ui+1ψi+1

= ui
xi+1 − x
xi+1 − xi

+ ui+1
x− xi

xi+1 − xi
, x ∈ Ii, i = 1, 2, · · · , n.

u′h = uiψ
′
i + ui+1ψ

′
i+1

= ui
−1

xi+1 − xi
+ ui+1

1

xi+1 − xi
, x ∈ Ii, i = 1, 2, · · · , n.

If for the case of Robin boundary condition u(0) = uL, u(1) + u′(1) = uR,{
u1 = uL,
un
−1
h

+ un+1
1+h
h

= uR.

To define the first and last rows, and we assemble the global linear
equations

1 0 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 · · · −1
h

1+h
h




u1

u2

...
un
un+1

 =



uL
...
...
...
uR


.
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Example 1. Model (1) with the mixed Robin boundary, whose exact solution is

u(x) =
em1x − em2x

(1 +m1)em1 − (1 +m2)em2
,

where m1 = −1+
√

1+4ε
2ε

,m2 = −1−
√

1+4ε
2ε

.
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Fig. 1. Exact solution for cases of ε = 10−1, 10−4, repectively.
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Fig. 2. When ε = 10−4, exact solution and numerical solution of

FEM(U) on NM = 2048 and MsFEM(S), MsFEM(B) on N = 512.
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NM FEM(U) FEM(S) FEM(B) N MsFEM(U) MsFEM(S) MsFEM(B)
16 1.793e-1 4.989e-2 6.804e-3 4 1.863e-1 4.287e-2 3.193e-2
32 2.394e-1 4.038e-2 3.348e-3 8 1.224e-1 1.919e-2 1.568e-2
64 1.679e-1 2.736e-2 1.736e-3 16 4.634e-2 8.465e-3 7.842e-3

128 3.439e-2 7.935e-3 9.475e-4 32 1.792e-2 3.800e-3 3.978e-3
256 4.425e-3 5.554e-4 4.905e-4 64 5.399e-3 2.041e-3 2.059e-3
512 1.178e-3 2.531e-4 2.451e-4 128 1.661e-3 1.064e-3 1.101e-3
1024 3.215e-4 1.268e-4 1.225e-4 256 5.623e-4 5.746e-4 6.291e-4
2048 9.120e-5 6.350e-5 6.125e-5 512 2.116e-4 3.332e-4 4.017e-4

Table 1. When ε = 10−4, H1 norm error of FEM(U), FEM(S), FEM(B)
and MsFEM(U), MsFEM(S), MsFEM(B), respectively.

From the above figure and table, we can see when ε = 10−4 is small to bring
the boundary layer phenomena. The accuracy of traditional FEM on uniform
grid level NM is bad, and it presents divergent on Graded grid. While the
MsFEM just spends less computational costs on the coarse grid level N to
acquire the accurate result, and with the mesh refinement its H1 norm gives
the first-order convergence.
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Example 2. Model (1) with Dirichlet boundary and oscillatory coefficients

bε(x) =

 1.8 + sin
(

2πx
ε1

)
1.8 + cos

(
2πx
ε2

) +
1.8 + cos

(
2πx
ε3

)
1.8 + sin

(
2πx
ε4

)
 , cε(x) =

 1.2 + cos
(

2πx
ε4

)
1.2 + sin

(
2πx
ε3

) +
1.2 + sin

(
2πx
ε2

)
1.2 + cos

(
2πx
ε1

)
 .
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Fig. 3. Coefficient bε(x)(blue), cε(x)(green).

Take ε = 0.1, ε1 = 1/3, ε2 = 1/9, ε3 = 1/99, ε4 = 1/200, and f(x) = 1. Since
there is no exact solution here, we use the FEM solution on very fine grid
NM = 8192 as ’exact solution’, and compare with the MsFEM solution on
coarse grid N .
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N M L2 norm abs error
32 8 0.1165 2.470e-2
64 8 0.1290 1.219e-2

128 8 0.1284 1.278e-2
256 8 0.1348 6.410e-3
512 8 0.1353 5.881e-3
1024 8 0.1365 4.684e-3

Table 2. L2 norm and absolute error of MsFEM.
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Fig. 4. Exact solution and MsFEM solution(on N = 32, 128, 1024 grids), repectively.

From the figure and table, MsFEM solution approximates the reference
solution accurately and efficiently with the mesh refinement.
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Consider the flow equation
∂u
∂t
− div(k(x)∇u) = f in Ω,

u = uD on ΓD,
−k(x)∇u · n = fN on ΓN ,

(9)

where k(x) is rapidly oscillatory coefficient, uD, fN is Dirichlet and
Neumann boundary, respectively.

The corresponding weak form is

a(u, v) = (f, v)− 〈fN , v〉ΓN , ∀v ∈ H1
D, (10)

where a(u, v) =
∫

Ω
k(x)∇u · ∇vdx, (f, v) =

∫
Ω
fvdx,

〈fN , v〉ΓN =
∫

ΓN
fNvds.
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To solve the local problem on coarse elements K to get the multiscale
basis χi, {

−div(k(x)∇χi) = 0 in K,
χi = ψi on ∂K.

(11)

Then every four coarse elements K form one coarse patch ωi, and take
k̃ = H2∑

i k(x)∇‖χi‖2. In this way, we apply the MsFEM enriched with
the eigenvalue computation,{

−div(k(x)∇φi) = λik̃φi in ωi,
−∇φi · n = 0 on ∂ωi,

(12)

we obtain the multiscale basis φi, and the ordering eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λL ≤ · · · , where L is the chosen number of
eigenvalues.

Define Φi,l = χiφi,l, where 1 ≤ l ≤ L. We construct the multiscale
space which be enriched with the eigenvalue pairs, such that

UH = span{Φi,l ⊂ H1
D}. (13)
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For the multiscale basis functions to be enriched with eigenvalue
information, we assemble the global mapping matrix according to the
mesh nodes,

R = [φ1, φ2, · · · , φL]. (14)

The size of R would increase with respect to the number of L. But it still
has great advantage than that of FEM on very fine grids.

On coarse patch scale to solve the eigenvalue problem

AΦ = λMΦ, (15)

where A = (Am,n) =
∫
ωi
k̃(x)∇φn · ∇φm = RT ĀR,

M = (Mm,n) =
∫
ωi
k̃(x)φn · φm = RT M̄R.

For example, L = 1, size(A) = 1212; L = 2, size(A) = 2022;
L = 4, size(A) = 3642; L = 8, size(A) = 6882. All of these are much
smaller than that of FEM on very fine grids (NM)2 = 1002, whose
size(A) = 102012. As a consequence, our enriched MsFEM can save
plenty of computational resources.
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Example 3. Model (9) with rapidly oscillatory coefficients k(x) and we set
right force f = 0. Define left boundary is 1 and right boundary is 0 of Dirichlet
type, and upper and lower boundary is 0 of Neumann type, which means the
gas or water flow from the left to the right, while there is no permeability up
and down. As for the time scale, we apply Euler backward difference or
Crank-Nicolson to accomplish the time-discretization.
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Fig. 5. Rapidly oscillatory coefficient k(x).
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Fig. 6. At the same moment, reference solution, enriched multiscale solution

as for taking eigenvalue number of L = 2, 4, 8.
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Fig. 7. At the same moment, reference solution, enriched multiscale solution

as for taking eigenvalue number of L = 2, 4, 8.
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Fig. 8. At the same moment, reference solution, enriched multiscale solution

as for taking eigenvalue number of L = 2, 4, 8.
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Fig. 9. At the same moment, reference solution, enriched multiscale solution

as for taking eigenvalue number of L = 2, 4, 8.
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