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Introduction & Motivation

We formulate a general theory on the effect of small jump-
like defects (which we will call weak defects) in discontinu-
ous inhomogeneous nonautonomous systems of ODEs:

u̇ =

{
f (u), t ≤ 0,
f (u) + εg(u), t > 0, (1.1)

where u ∈ Rn, f (u), g(u) : Rn → Rn are sufficiently smooth,
and ε is a small positive parameter.

[cf. D.W. McLaughlin and A.C. Scott, Perturbation analysis of
fluxon dynamics, Phys. Rev. A, 1978.]
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Introduction & Motivation

The perturbed generalized three-component FitzHugh-Nagumo
system [P. van Heijster, etc, Nonlinearity 2011]

Ut = ε2Uxx + U − U3 − ε(αV + βW + γ(x))
τVt = Vxx + U − V
θWt = D2Wxx + U −W ,

(1.2)

with (x, t) ∈ (R,R+), α, β ∈ R,D > 1, τ, θ > 0, 0 < ε � 1,
and

γ(ξ) =

{
γ1 for x ≤ 0 ,
γ2 for x > 0 , (1.3)

where γ1,2 ∈ R.
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Introduction & Motivation

Written as a system of six first order ODEs

uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ(ξ)) ,
vξ = εq ,
qξ = ε(v− u) ,
wξ = ε

Dr ,
rξ = ε

D(w− u) ,

(1.4)

with ξ := x/ε, α, β ∈ R,D > 1, 0 < ε � 1, and γ(ξ) as in
(1.3).
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Introduction & Motivation

The original homogeneous three-component version:
to explore gas discharge phenomena [M. Bode, A.W.
Liehr, C.P. Schenk and H.-G. Purwins, Physica D 2002]
Stable pinned stationary front and pulse solutions with
the front or back of the solution located near the weak
defect, i.e. near x = 0 [P. van Heijster, etc, Nonlinearity
2011]
Another type of pinned localized defect solutions is
identified. Neither the existence nor stability of these
type of defect solutions, which we will call local defect
solutions, was shown.
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Introduction & Motivation
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Figure 1.1: Left panel: a trivial weak defect solution supported by (1.2). The system
parameters were as follows (α, β,D, γ1, γ2, τ, θ, ε) = (3,−2, 5, 3,−1, 1, 1, 0.1). Middle
panel: a local weak defect solution in the shape of a stationary front solution sup-
ported by (1.2). The system parameters were as follows (α, β,D, γ1, γ2, τ, θ, ε) =
(3, 2, 5, 0, 10, 1, 1, 0.01). Right panel: A local weak defect solution in the shape of a
stationary pulse solution supported by (1.2). The system parameters were as follows
(α, β,D, γ1, γ2, τ, θ, ε) = (3, 2, 5, 2, 1, 1, 1, 0.01) (note that this panel is adapted from Fig-
ure 5 of [vHDKNU,2011]). The location of the defect is indicated by the dashed line and
ξ := x/ε.
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Introduction & Motivation

This leads to the following question: can we develop a
general theory for the persistence and/or existence of de-
fect solutions supported by (1.1) for generic perturbations
εg(u) under mild, generic assumptions on the unperturbed
system

u̇ = f (u), u(t) : R→ Rn?
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Problem Setting

Hypotheses

The unperturbed system, that is (1.1) with ε = 0, is
homogeneous and continuous

u̇ = f (u), t ∈ R . (2.1)

Hypothesis (H1).System (2.1) has N isolated equilib-
rium points Pi (i = 1, 2, · · · ,N), where N is a positive
integer or +∞.
The continuous perturbed system, that is,

u̇ = f (u) + εg(u), t ∈ R, (2.2)

has N equilibrium points Pεi with P0
i = Pi for i = 1, 2, · · · ,N,

provided that ε is small enough.
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Problem Setting

Hypotheses

We are interested in solutions to (1.1) that asymptote
to a hyperbolic P− at −∞ and to a hyperbolic P+

ε at∞,
where P− ∈ {P1,P2, · · · ,PN} and P+

ε ∈ {Pε1,Pε2, · · · ,PεN},
under the assumption that the unperturbed system (2.1)
supports an isolated heteroclinic orbit.
Hypothesis (H2).The unperturbed system (2.1) sup-
ports an heteroclinic orbit Γ connecting P− with P+ =
P+

0 in forward time.
More specifically, there is a Γ ∈ Wu(P−)∩Ws(P+) and we assume that the inter-
section is “minimally non-transversal”. That is, if dim(Wu(P−))+dim(Ws(P+)) ≤
n, then dim(Wu(P−)∩Ws(P+)) = 1 and if dim(Wu(P−))+dim(Ws(P+)) = m >
n, then dim(Wu(P−) ∩Ws(P+)) = m− n.

Moreover, we assume that all eigenvalues of the linearization around P± are

simple.
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Problem Setting

Hypotheses

Definition 2.1

Assume (H1) and (H2) hold and assume that ε is suffi-
ciently small. IfW s,u(P+) 6= n, then we call the perturbation
(1.1) of (2.1) a generic perturbation if the distance be-
tweenW s,u

loc(P+) and P+
ε is strictly of order ε and not smaller,

that is,
d(W s,u

loc(P+),P+
ε ) = Os(ε) ,

where d(·, ·) denotes the Euclidian distance.
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Problem Setting

Hypotheses

Hypothesis (H3).The perturbation (1.1) of (2.1) is a generic
perturbation.

P+
"

P+

Wu(P+
" )

Ws(P+
" )Ws(P+)

Wu(P+)

O(")

Figure 2.1: For a generic perturbation we have that d(Ws,u
loc (P+),P+

ε ) = Os(ε). That
is, P+

ε does not lie inside of the shaded blue regions. Moreover, since the perturbation
isO(ε), the stable and unstable manifolds of P+

ε and P+ are locally and to leading order
parallel.
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Problem Setting

Definitions of defect solutions

Definition 2.2

A C0-solution Γε(t) of (1.1) is called a defect solution if

lim
t→−∞

Γε(t) = P− and lim
t→+∞

Γε(t) = P+
ε .

We distinguish between three types of defect solutions.

Definition 2.3

A defect solution Γε(t) is said to be a trivial defect solu-
tion if P− = P+ and

lim
ε→0
‖Γε(t)− P+

ε ‖∞ = 0.

Donghua University 14 / 48
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Problem Setting

Definitions of defect solutions

Definition 2.4

A nontrivial weak defect solution Γε(t) is said to be a local
defect solution if either
lim
ε→0
‖Γε(t)− P+

ε ‖∞,R+ = 0, or lim
ε→0
‖Γε(t)− P−‖∞,R− = 0,

(2.3)
where ‖ · ‖∞,R± denotes the L∞-norm over R±. Moreover,
we say that the defect occurs near P+

ε if the first condition
of (2.3) holds and the defect occurs near P− if the second
condition holds.
Finally, a nontrivial defect solution Γε(t) is said to be a
global defect solution if
lim
ε→0
‖Γε(t)−P+

ε ‖∞,R+ > 0, and lim
ε→0
‖Γε(t)−P−‖∞,R− > 0.
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Problem Setting

Definitions of defect solutions

P+
"

P�P+

P+
"

t = 0t = 0 t = 0 t = 0

Figure 2.2: Left panel: trivial defect solution connecting P+ with P+
ε . Middle panels:

local defect solution near P−, P+
ε , respectively. Right panel: global defect solution

connecting P− with P+
ε .

Donghua University 16 / 48



International Conference on Singular Perturbation Theory and its Applications, Hefei, June 24-28, 2016

Examples: n = 2, 3

n = 2: Global defects

GLOBAL DEFECTS IN A PERTURBED STATIONARY FISHER-KPP EQUATION

Consider the following perturbed planar ODE

(
u̇
ṗ

)
=



(
p

u− u2

)
, t ≤ 0(

p + εg1(u, p)

u− u2 + εg2(u, p)

)
, t > 0

(3.1)

where g1 and g2 are sufficiently smooth functions and ε is
a small parameter.

Donghua University 17 / 48



International Conference on Singular Perturbation Theory and its Applications, Hefei, June 24-28, 2016

Examples: n = 2, 3

n = 2: Global defects

P�

P+
"

t = 0

t = 0

Ws(P+
" )

Wu(P+
" )

Wu(P�)

Ws(P�)

Figure 3.1: A typical sketch of the stable and unstable manifold of P− (blue) and the
stable and unstable manifold of P+

ε (red) from (3.1) in the case that P+ = P−, i.e. Γ of
(H2) is actually an homoclinic orbit. There are two intersection points of Wu(P−) and
Ws(P+

ε ) (indicated by the black dots), which correspond to a trivial defect solution (the
one closest to the equilibrium points) and a global defect solution, respectively.
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Examples: n = 2, 3

n = 2: Global defects

Global defect solutions are too hard to study in the
general case.
Hamiltonian structure. For example, for the non-generic
perturbation g1 = 0 and g2 = −u + 2u2, system (3.1)
has two global defect solutions. This can be observed
from the fact that(

u̇
ṗ

)
=

(
p

u− u2 + ε(2u2 − u)

)
,

still has an homoclinic orbit to (0, 0), which has ex-
actly two intersection points with the homoclinic orbit
of (3.1) with ε = 0.

Donghua University 19 / 48
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Examples: n = 2, 3

n = 2: Global defects

t = 0P� = P+
"

P�

P� = P+
"

t = 0

t = 0

Wu(P�)

Ws(P�)

Ws(P+
" )

Wu(P+
" )

Figure 3.2: Left panel: the stable and unstable manifold of P− and the stable and
unstable manifold of P+

ε of (3.1) with g1 = 0 and g2 = −u + 2u2. The two intersection
points correspond to two global defect solutions which are shown in the right panel.
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Examples: n = 2, 3

n = 2: Local defect solution near P+
ε

dim(Wu(P−)) > dim(Wu(P+))

P� P+

P+
"

�

Wu(P�)

Ws(P+
" )

Wu(P+
" )

t = 0 Ws(P+)

Wu(P+)

Figure 3.3: For dim(Wu(P−)) > dim(Wu(P+)) there exists a continuous fam-
ily of local defect solutions near P+

ε in a planar system. That is, Wu(P−) and
Ws(P−

ε ) intersect in a line (indicated by the black dots) near P+
ε . Note that we can

parametrize time in such a fashion that t = 0 coincides with an particular intersec-
tion of Wu(P−) and Ws(P−

ε ) creating a local defect solution. In this figure, we have
dim(Wu(P−)) = 2 > 1 = dim(Wu(P+)). See Figure 3.4 for sketches of the case
dim(Wu(P−)) = 1 > 0 = dim(Wu(P+)).
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Examples: n = 2, 3

n = 2: Local defect solution near P+
ε

P+
P� P�

Wu(P�)

Ws(P�)

�
t = 0 P+

P+
"

Ws(P+
" )

Ws(P+)

Ws(P+
" )

Ws(P�)

Wu(P�)

t = 0

�

P+
"

Figure 3.4: For dim(Wu(P−)) > dim(Wu(P+)) there exists a continuous fam-
ily of local defect solutions near P+

ε in a planar system. In this figure, we have
dim(Wu(P−)) = 1 > 0 = dim(Wu(P+)). Left panel: P+ has two real negative sim-
ple eigenvalues. Right panel: P+ has a complex pair of eigenvalues with negative real
part. See also Figure 3.3.
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Examples: n = 2, 3

n = 2: Local defect solution near P+
ε

dim(Wu(P−)) = dim(Wu(P+))

P� P+

P+
"

�

P�

P+

� P+
"

Ws(P+
" )

Wu(P�) Wu(P�) Ws(P+
" )

Figure 3.5: Left panel: for dim(Wu(P−)) = dim(Wu(P+)) = 1, a generic perturbation
does not lead to a local defect solution in a planar system near P+

ε since the stable and
unstable manifold of P+ and P+

ε are locally parallel and therefore Γ does not intersect
with Ws(P+

ε ) near P+
ε . A trivial defect solution connecting P+ to P+

ε does exist since
Wu(P+) andWs(P+

ε ) intersect for generic perturbations and also global defect solution
can of course exist (this is indicated by the red dotted trajectory). Right panel: in the
case of dim(Wu(P−)) = dim(Wu(P+)) = 1 a non-generic perturbation can lead to
non-generic local defect solution in a planar system.
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Examples: n = 2, 3

n = 2: Local defect solution near P+
ε

We summarize the results for local defect solutions near
P+
ε for (1.1) with n = 2 in Table 1.

Two dimensional systems with heteroclinic connection

dim(Wu(P−)) dim(Wu(P+))
0 1

1 cont. family none
2 cont. family cont. family

Table 1: Local defect solutions near P+
ε in generically perturbed two-dimensional

systems.
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Examples: n = 2, 3

n = 3: Local defect solution near P+
ε

3D CASE.

dim(Wu(P−)) > dim(Wu(P+))

A continuous family of local defect solutions.
Since dim(Wu(P−)) + dim(W s(P+

ε )) ≥ 4, we have that the
intersectionWu(P−)∩W s(P+

ε ) in a three-dimensional space
is generically at least a one parameter family of solutions.
See Theorem 4.1.
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Examples: n = 2, 3

n = 3: Local defect solution near P+
ε

dim(Wu(P−)) < dim(Wu(P+))

Two one-dimensional curves in a three-dimensional space
generically do not intersect and sinceW s(P+) andW s(P+

ε )
are locally parallel, local (and global) defect solutions are
not expected. See also Theorem 4.1.
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Examples: n = 2, 3

n = 3: Local defect solution near P+
ε

dim(Wu(P−)) = dim(Wu(P+))

- dim(Wu(P−)) = dim(Wu(P+)) = 1

P+
"

�

P+

Wu(P+) Wu(P�)

Ws(P+)

Ws(P+
" )

Wu(P+
" )

Figure 3.6: Also in three dimensional systems local defect solutions near P+
ε do

generically not exist for dim(Wu(P−)) = dim(Wu(P+)) = 1, since, generically, there
exists no intersection ofWu(P−) andWs

loc(P+
ε ). The figure sketches the situation in the

case that the stable eigenvalues of P+ are real and simple.

See Theorem 4.1.
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Examples: n = 2, 3

n = 3: Local defect solution near P+
ε

We summarize the results for local defect solutions near
P+
ε for (1.1) with n = 3 in Table 2.

Three dimensional systems with heteroclinic connection

dim(Wu(P−)) dim(Wu(P+))
0 1 2

1 cont. family none none
2 cont. family cont. family real evals.: semi-cone condition

complex evals.: countably many
3 cont. family cont. family cont. family

Table 2: Local defect solutions near P+
ε in generically perturbed three-dimensional

systems.
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Main Results

Trivial defect solutions

Lemma 4.1

Assume Hypothesis (H1) hold and that P+ is a hyperbolic
equilibrium point of (2.1). Then, there exists ε0 > 0 such
that for ε ∈ (0, ε0] the system (1.1) has a unique trivial
defect solution Γε(t) connecting P+ and P+

ε , where P+
0 =

P+.

back
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Main Results

Dimensional dependence

DIMENSIONAL DEPENDENCE

Theorem 4.1

Assume Hypotheses (H1)-(H3) hold. Then, for ε > 0 small
enough a necessary condition for having local defect solu-
tions near P+

ε connecting P− to P+
ε in (1.1) is

dim(Wu(P−)) ≥ dim(Wu(P+)).

Moreover, if dim(Wu(P−)) = dim(Wu(P+)) then we nec-
essarily also need dim(Wu(P−)) > 1 for a local defect
solutions near P+

ε to exist. Finally, if dim(Wu(P−)) >
dim(Wu(P+)), then the necessary condition is also suffi-
cient and (1.1) possesses a continuous family of local de-
fect solutions near P+

ε .

back
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Main Results

Local weak defects

LOCAL WEAK DEFECTS

Theorem 4.2

Assume Hypotheses (H1)-(H3) hold and that

dim(Wu(P−)) = dim(Wu(P+)) > 1.

Then, for ε > 0 small enough and if the leading unsta-
ble eigenvalue of the Jacobian of P+ is complex-valued,
then (2.1) possesses countably many local defect solu-
tions near P+

ε . If the leading unstable eigenvalue of the
Jacobian of P+ is real-valued, then (2.1) possesses local
defect solutions near P+

ε as long as the perturbation meets
(a) semi-cone condition(s).

back
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Main Results

Local weak defects

NORMAL FORM

Lemma 4.2
(Homburg and Sandstede 2010) There exists a smooth coor-
dinate transformation u 7→ (xls, xss, ylu, yuu) such that (2.1)
near the origin transforms into

ẋls = Alsxls +O
(
(|xls|2 + |xss|)|y|

)
,

ẋss = Assxss +O
(
|xls|2 + |xss|(|x|+ |y|)

)
,

ẏlu = Aluylu +O
(
(|xlu|2 + |yuu|)|x|

)
,

ẏuu = Auuyuu +O
(
|xlu|2 + |yuu|(|x|+ |y|)

)
,

(4.1)

where x = (xls, xss) ∈ Els ⊕ Ess and y = (ylu, yuu) ∈ Elu ⊕ Euu.

back
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Main Results

Local weak defects

CASE I: THE UNIQUE LEADING UNSTABLE EIGENVALUE IS REAL AND SIMPLE

Let the section L~δ be the intersection of x = ~δ(ε) andWu(P−). In
the δ-neighborhood of the origin, L~δ can be expressed as

K1ylu + 〈K2, yuu〉+O(|y|2) = 0, (4.2)

where K1 is constant, K2 is a (n− `− 1)-dimension vector.

Theorem 4.3

Assume Hypotheses (H1)-(H3) hold and that the Jacobian
of P+ of system (2.1) has a real and simple leading un-
stable eigenvalue. Then, for sufficiently small ε > 0, (1.1)
has at least a local defect solution near P+

ε = (x∗, y∗) if the
following semi-cone condition is met

K1ylu
∗
(
K1ylu

∗ + 〈K2, yuu
∗ 〉
)
< 0. (4.3)
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Main Results

Local weak defects

CASE I: THE UNIQUE LEADING UNSTABLE EIGENVALUE IS REAL AND SIMPLE

Theorem 4.4

Assume Hypotheses (H1)-(H3) hold and that the Jacobian
of the P+ of system (1.1) has m distinct real unstable eigen-
values. Let P+

ε = (x∗(ε), y∗(ε)) be the equilibrium of (2.2).
Then, for sufficiently small ε > 0 there exist regions Ωk in
the space of parameters x∗, y∗,K1 and K2 such that sys-
tem (1.1) has k local defect solutions connecting P− to P+

ε ,
where k = 0, 1, · · · ,m− 1.
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Main Results

Local weak defects

CASE I: THE UNIQUE LEADING UNSTABLE EIGENVALUE IS REAL AND SIMPLE

Theorem 4.5

Assume Hypotheses (H1)-(H3) hold and that the Jacobian
of P+ of system (2.1) has m distinct unstable eigenvalues,
among which there is a real leading unstable eigenvalue
and at least a pair of complex conjugate unstable eigen-
values. Let P+

ε = (x∗(ε), y∗(ε)) be the equilibrium of (2.2).
Then, for any k ∈ Z+ there exists a region Ωk for x∗, y∗,K1

and K2 such that for sufficiently small ε > 0 system (1.1)
has k local defect solutions connecting P− to P+

ε .
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Main Results

Local weak defects

CASE II: THE LEADING UNSTABLE EIGENVALUES ARE A PAIR OF COMPLEX CONJUGATION

Fix δ small enough and let the section L~δ be the intersection of x = ~δ(ε) with |~δ| = δ

andWu(P−). In the δ-neighborhood of the origin, L~δ can be expressed as

〈K1, ylu〉+ 〈K2, yuu〉+O(|y|2) = 0, (4.4)

where K1 and K2 are 2 and (m− 2) dimensional vectors, respectively.

Theorem 4.6

Assume Hypotheses (H1)-(H3) hold and
∣∣K1
∣∣ 6= 0 in (38).

Let the Jacobian of P+ of system (2.1) have a pair of com-
plex conjugation and simple leading unstable eigenvalues.
Then, for sufficiently small ε > 0 system (1.1) has count-
ably infinite local defects near P+

ε .
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Two Models

Extended Fisher-Kolmogorov equation

EXTENDED FISHER-KOLMOGOROV EQUATION

Consider the extended Fisher-Kolmogorov equation

∂u
∂t

= −~∂
4u
∂ξ4 +

∂2u
∂ξ2 + u− u3, ~ > 0,

which was proposed as a higher order model equation for non-
trivial spatio-temporal pattern formation by Dee and van Saar-
loos. Its stationary equation is

−~d4u
dξ4 +

d2u
dξ2 + u− u3 = 0,

which by the change ξ → ~1/4ξ can be transformed into the
canonical form

d4u
dξ4 + β

d2u
dξ2 + u− u3 = 0, β = −1/

√
~ < 0. (5.1)
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Two Models

Extended Fisher-Kolmogorov equation

EXTENDED FISHER-KOLMOGOROV EQUATION

Consider an inhomogeneous perturbation of equation (5.1)

d4u
dξ4 + β

d2u
dξ2 + u− u3 =

{
0, ξ < 0,
εg(u, uξ, uξξ, uξξξ), ξ > 0.

(5.2)

The equivalent system of first order ODEs is given by


u′

p′

q′

r′

 =




p
q
r

u− u3 − βq

 , ξ < 0


p
q
r

u− u3 − βq + εg(u, p, q, r).

 , ξ > 0.

(5.3)
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Two Models

Extended Fisher-Kolmogorov equation

EXTENDED FISHER-KOLMOGOROV EQUATION

(5.3)0 has three equilibria P0 = (0, 0, 0, 0) and P± = (±1, 0, 0, 0).

Corollary 5.1
For β < 0 and sufficiently small ε > 0 there exists a unique trivial
defect solution in (5.3) that connects P− to P−ε and a unique
trivial defect solution that connects P+ to P+

ε .

Theorem 5.1
Let β ∈ (−2

√
2, 0) in (5.3)0. Then, there is an isolated hetero-

clinic solution Γ1 = (u1, p1, q1, r1) that connects P− to P+; the
u−component u1(ξ − ξ∗) of Γ1 corresponds to a translational
family of kink solutions of (5.1) that have a unique zero at the
midpoint ξ = ξ∗ and that are odd as a function of ξ w.r.t ξ = ξ∗.

[cf. L.A. Peletier and W.C. Troy, Spatial Patterns: Higher Order Models in Phys. and Mech., Birkhäuser, 2001.]
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Two Models

Extended Fisher-Kolmogorov equation

EXTENDED FISHER-KOLMOGOROV EQUATION

The equilibrium points P± persist in heterogeneously per-
turbed system (5.3)

P±ε = (±1 + εg(±1, 0, 0, 0) +O(ε2), 0, 0, 0).

Theorem 5.2

Let g(1, 0, 0, 0) 6= 0 and β ∈ (−2
√

2, 0). Then, for ε >
0 small enough, the stationary perturbed heterogeneous
eFK system (5.3) supports countably many local defect
kink solutions that connect P− to P+

ε .
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Two Models

Perturbed FitzHugh-Nagumo equation

PERTURBED FITZHUGH-NAGUMO EQUATION

The perturbed generalized three-component FitzHugh-Nagumo
system

Ut = ε2Uxx + U − U3 − ε(αV + βW + γ(x))
τVt = Vxx + U − V
θWt = D2Wxx + U −W .

(5.4)

Written as a system of six first order ODEs, it is given by

uξ = p ,
pξ = −u + u3 + ε(αv + βw + γ(ξ)) ,
vξ = εq ,
qξ = ε(v− u) ,
wξ = ε

D r ,
rξ = ε

D(w− u) ,

(5.5)

with ξ := x/ε, α, β ∈ R,D > 1, 0 < ε� 1, and γ(ξ) as in (1.3).
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Two Models

Perturbed FitzHugh-Nagumo equation

PERTURBED FITZHUGH-NAGUMO EQUATION

Its reduced two-component model{
Ut = ε2Uxx + U − U3 − ε(αV + γ(x)),
τVt = Vxx + U − V,

(5.6)

with (x, t) ∈ (R,R+), α ∈ R,D > 1, τ > 0, 0 < ε� 1, and γ(x) as
in (1.3).
The associated ODE is four dimensional.

uξ = p ,
pξ = −u + u3 + ε(αv + γ(ξ)) ,
vξ = εq ,
qξ = ε(v− u) .

(5.7)

Donghua University 45 / 48



International Conference on Singular Perturbation Theory and its Applications, Hefei, June 24-28, 2016

Two Models

Perturbed FitzHugh-Nagumo equation

Theorem 5.3

Let γ(ξ) be as in (1.3) with γ1 = 0 and let ε be small enough.
Moreover, let Γhet(ξ) be the 1-front heteroclinic orbit that con-
nects P1(0) ≡ P− to P2(0) ≡ P+ in the homogeneous case γ = 0,
and let α, β, γ2 ∈ R be O(1) with respect to ε.

` = 2: Then, there exists a local defect heteroclinic orbit
Γhet,defect(ξ) to (5.7) that connects P− to P̃+ if and only if
α > 0;

` = 3: Then, there exists a local defect heteroclinic orbit
Γhet,defect(ξ) to (5.5) that connects P− to P̃+ for α, β > 0.

The orbit of the local defect Γhet,defect(ξ) in the 2`-dimensional
phase space of (5.7)/(5.5) is O(ε)-close to the corresponding
Γhet(ξ).
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Two Models

Perturbed FitzHugh-Nagumo equation

PERTURBED FITZHUGH-NAGUMO EQUATION

P� P�

P+
P+

�het�het

M+ M+M�M�

Wu(M�) Wu(M�)

Ws(M+)Ws(M+)

Wu(M+) Wu(M+)

Wu(M�)

Wu(M�)

↵ > 0 ↵ < 0

Figure 5.1: The three dimensional unstable manifoldWu(M−) and stable manifold
Ws(M+) of the two dimensional slow manifoldsM− andM+ in the four dimensional
phase space associated to (5.7), sketched as two dimensional unstable and stable man-
ifolds in R3. Left panel: α > 0 andWu(M−) is outsideWu(M+)∪Ws(M+) for v0 > 0
and inside for v0 < 0. Right panel: α < 0 and note that the more subtle stretched and
folded structure ofWu(M−) exponentially close toWu(M−)∩Ws(M+) is not shown.
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