
Introduction Qualitative Quantitative

On periodic orbits in non-smooth and
singularly perturbed differential equations with

applications

R. Prohens

ICSPTA June 24-28, 2016

Hefei University, Chinese Society of Mathematics
Chinese Society of Singular Perturbations, SJTU
Prof. Jiaqi Mo’s 80th birthday (Happy birthday)

Partially supported by the MCYT grant MTM2014-54275-P

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative

On periodic orbits in non-smooth
singularly perturbed differential equations
with applications

Main purposes of this talk:

I Reproduce smooth slow-fast dynamics in the framework of
PWL

I Approachable study of periodic behaviours, MMOs,
through PWL slow-fast differential systems

I Present simplified models, meaningful for neuroscience
applications
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Introduction: Canard cycles

Canard cycles: Limit cycles flowing with very different velocities
along the orbit.

Tipically occur in slow-fast differential systems.

Exemple: Van der Pol system

ẋ = y − f(x)
ẏ = ε(a− x)

}
, f(x) = x

(
x2

3
− 1

)
, 0 < ε� 1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

a= 0.986322, epsilon=0.1

0

2
x(t)

0 15

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative Canard cycles. References

Canard Orbits in 2-D

[Izhikevich, Springer(2007)]

f=0

g=0

Canard orbits cross from the attracting manifold to the repelling
manifold.

The first existence results on canards were obtained by means of
nonstandard analytical techniques in Benôıt et al.1

Canards also where reported and studied by Dumortier and Roussarie, by
using invariant manifold theory and parameter blow-up2

1
Benôıt E, Callot J-L, Diener F, Diener M. 1981 Chasse au canard. Coll. Maths 32, 37–119.

2
Canard Cycles and Center Manifolds. 577, Memoirs of the American Mathematical Society, (1996).
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Introduction: Canard explosion

Canard explosion: Sudden growing of the amplitude of the limit
cycle.

Exemple: Van der Pol system

ẋ = y − f(x)
ẏ = ε(a− x)

}
, f(x) = x

(
x2

3
− 1

)
, 0 < ε� 1
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Introduction: Canard explosion

Canard explosion: Sudden growing of the amplitude of the limit
cycle.
Exemple: Van der Pol system

ẋ = y − f(x)
ẏ = ε(a− x)

}
, f(x) = x

(
x2

3
− 1

)
,

J =

(
1− a2 1
−ε 0

)
4 = (1− a2)2 − 4ε

e−
c
ε

ε = 1 ε = 0.1
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Fenichel’s geometric theory allows us to analyze the dynamics of

u̇ =
du

dt
= εg(u,v, ε), v̇ =

dv

dt
= f(u,v, ε), (fast time scale)

where (u,v) ∈ Rs × Rq when f and g are sufficiently smooth functions.
The coordinates of u are called slow variables, while the coordinates of v
are called fast variables.

Or equivalently, τ = εt,

u′ =
du

dτ
= g(u,v, ε), εv′ = ε

dv

dτ
= f(u,v, ε). (slow time scale)
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This analysis follows by combining the behaviour of the singular orbits,
corresponding to the limiting problems, ε = 0

layer: u̇ = 0, v̇ = f(u,v, 0),
reduced: u′ = g(u,v, 0), 0 = f(u,v, 0), u ∈ Rs

where ′ = d/dτ , τ = εt. Critical manifold

S = {(u,v) ∈ Rs+q | f(u,v, 0) = 0}.

We call normally hyperbolic the singular points (u0,v0) ∈ S for which the
eigenvalues of the Jacobian matrix Dvf(u0,v0) have nonzero real part.
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Question

What does it remains in the dynamical behaviour when smoothness is no
longer present?

That is, what does it remains from previous dynamic behavior when
smoothness on the critical manifold S is not assumed?

S = {(u,v) ∈ Rs+q | f(u,v, 0) = 0}.

For instance, for s = 1 and q = 1...

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Related works

Canard dynamics has been investigated in planar PWL slow-fast systems,
from the 1990s.

Canard-type behaviour has been observed experimental electronic circuits

The corners play the role of the fold points and cycles resembling canards
and evolving around these corners were identified by simulation.

1991 M. Itoh and R. Tomiyasu, Canards and irregular
oscillations in a nonlinear circuit, in Circuits and Systems,
1991., IEEE International Sympoisum on, IEEE, 1991, pp.
850–853.
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The cubic critical manifold is replaced by a PWL caricature consisting of
three straight line segments.

1991 M. Komuro and T. Saito, “Lost solution” in a piecewise
linear system, IEICE Trans., vol. E, 74 (1991), pp.
3625–3627.

The first study of a PWL van der Pol system from the perspective of
canards (McKean ODE model)
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Canards with head can arise only in systems with one more piece in
between the two corners.

The main idea to obtain true canard cycles in a planar PWL systems
consists in approximating the critical manifold near a fold by a
three-piece PWL function.

1997 N. Arima, H. Okazaki, H. Nakano, A generation
mechanism of canards in a piecewise linear system, IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 80 (1997)
447–453.

To obtain the correct transition of eigenvalues near the fold.
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In [PRSZ2011]3 the authors prove the existence of canard cycles in
singularly perturbed piecewise differential systems with s = 2 and q = 1.

This fact suggested that: canards are not exclusively a differential
phenomenon, but rather a geometric one.

3
A. Pokrovskii, D. Rachinskii, V. Sobolev and A. Zhezherun, Topological degree in analysis of canard-type trajectories in 3-D systems,

Applicable Analysis: An International Journal, 90 (2011), 1123–1139.
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More recently:

2011 D. J. Simpson and R. Kuske, Mixed-mode oscillations in a
stochastic, piecewise-linear system, Physica D, 240
(2011), pp. 1189–1198.

2012 H. G. Rotstein, S. Coombes, and A. M. Gheorge,
Canard-like explosion of limit cycles in two-dimensional
piecewise-linear models of FitzHugh-Nagumo type, SIAM
Journal on Applied Dynamical Systems, 11 (2012), pp.
135–180.

2013 M. Desroches, E. Freire, S. J. Hogan, E. Ponce, P. Thota,
Canards in piecewise-linear systems: explosions and
super-explosions, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science 469
(2013).
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M. Desroches, E. Freire, S.J. Hogan, E. Ponce and P. Thota
Canards in PWL systems: explosions and super-explosions, Proc. Royal S. 2013.

Planar slow-fast piecewise-linear (PWL) system with three zones admits
limit cycles that share a lot of similarity with van der Pol canards, in
particular and explosive growth.

ẋ = y − f(x)
ẏ = ε(a− x)

}

f(x) =

 x+ k + 1 x < −1,
−kx |x| < 1,
−x− k − 1 x > 1

4 = k2 − 4ε > 0

a = 1

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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M. Desroches, E. Freire, S.J. Hogan, E. Ponce and P. Thota
Canards in PWL systems: explosions and super-explosions, Proc. Royal S. 2013.

Absence of true canards with still the presence of an explosive growth of
cycles upon parameter variation.

ẋ = y − f(x)
ẏ = ε(a− x)

}

f(x) =

 x+ k + 1 x < −1,
−kx |x| < 1,
−x− k − 1 x > 1

4 = k2 − 4ε > 0

a = 0.8
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References on neuron models

A large class of neuron models are based on the approximation that the
membrane of the neuron behaves like a circuit. The voltage equation is
obtained by applying Kirchoff’s law.

After the model by (HH model):

1952 A. L. Hodgkin and A. F. Huxley, A quantitative
description of membrane current and its application to
conduction and excitation in nerve, The Journal of
physiology, 117 (1952), p. 500.
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The first reduction to a planar system (FHN model):

1961 R. FitzHugh, Impulses and physiological states in
theoretical models of nerve membrane, Biophysical
Journal, 1 (1961), pp. 445–466.

1962 J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse
transmission line simulating nerve axon, Proceedings of
the IRE, 50 (1962), pp. 206–2070.

where, the vector field of the HH model was approximated by a
polynomial system through the crucial observation that the voltage
nullcline is roughly cubic shaped.

Hence, the FHN model appears as a modified van der Pol system.

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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The FHN model was investigated from the slow-fast perspective and
further simplified by approximating the cubic voltage nullcline by a PWL
function in

1970 M. P. McKean, Nagumo’s equation, Advances in
mathematics, 4 (1970), pp. 209–223,
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The McKean model, is a two dimensional FHN model of speaking neurons

C
dv

dt
= f(v)− w + I(t),

dw

dt
= v − γw,

where I(t) is the external current and f(v) is a piecewise linear caricature
of the cubic FitzHugh-Nagumo function

f(v) =

 −v < a/2,
v − a a/2 ≤ v ≤ (1 + a)/2,
1− v v > (1 + a)/2.

v(t) is the membrane potential, w(t) is the membrane current.

a, γ > 0 constants

C corresponds to the cell membrane capacitance which is assumed to be
small and bounded 0 < C � 0.1.
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Question

What does it remains in the dynamical behaviour when smoothness is no
longer present?

That is, what does it remains from previous dynamic behavior when
smoothness on the critical manifold S is not assumed?

S = {(u,v) ∈ Rs+q | f(u,v, 0) = 0}.

For instance, for s ≥ 2, q = 1.
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R.P., A.E.Teruel
Canard trajectories in 3D piecewise linear systems,
Discrete and Continuous Dynamical Systems. 2013

For next singularly perturbed 3–dimensional piecewise linear differential
system  u̇1 = ε(a11u1 + a12u2 + a13v + b1),

u̇2 = ε(a21u1 + a22u2 + a23v + b2),
v̇ = u1 + |v|,

where 0 < ε� 1,

we provide numerical arguments for the existence of a canard cycle.

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Representation of the canard cycle γpc , slow manifolds S̃−ε ∪ S̃+ε and the
border planes {v = η}, {v = 0} and {v = −η}, which separate the
regions where the system is linear. We highlighted the points of
intersection of γpc with the border planes.
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Qualitative compatibility between
PWL and smooth diff. eq.

Since the late 1990s several papers have shown that the canard
phenomenon can be reproduced with piecewise-linear (PWL) dynamical
systems in two and three dimensions, exhibiting an slow-fast dynamics.
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R.P., A.E.Teruel, C. Vich
Slow-fast n-dimensional piecewise linear differential systems,
Jour. Diff. Eq. 2016.

Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

This paper is mainly concerned with maximal canard orbits occurring in
n-dimensional piecewise linear slow-fast systems.

More precisely, conditions for the existence of maximal canard orbits
and/or faux canard orbits are established.

We show that these maximal canards perturb from singular orbits
(singular canards) whose order of contact with the fold manifold is
greater than or equal to two.

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

u ∈ Rs slow variable
v ∈ R fast variable

0 < ε� 1 ratio of time scales
n = s+ 1 system dimension

A = (aij)1≤i,j≤s s× s real matrix
a = (a1, a2, . . . , as)

T vector in Rs
b = (b1, b2, . . . , bs)

T vector in Rs

Rather general: f(u, v, ε) = dTu + |v| , with d 6= 0, can be

transformed into our system (u→
(
dTu, u2, . . . , un

)T
).

Continuous and nonlinear system (but, piecewise linear).

2 regimes: {v ≤ 0} and {v ≥ 0} and 1 common boundary {v = 0}.

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

I Slow-Fast PWLS dynamics approach:

Associated we have the:

fast subsystem (layer problem)

slow subsystem (reduced problem)

critical manifold, where the slow subsystem is defined, S
fold manifold, F , when normal hyperbolicity fails, (points where S
folds)

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Unperturbed Dynamics:

Fast subsystem{
u̇ = 0,
v̇ = u1 + |v|,

Critical manifold

S = {(u, v) ∈ Rn : u1+|v| = 0}

S = S+ ∪ F ∪ S−
S+ = {u1 + v = 0; v > 0}
S− = {u1 − v = 0; v < 0}
F = {u1 = 0, v = 0}

where S+ and S− are normally
hyperbolic and F is the fold
manifold

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative Maximal and faux canards in Rn MMOs in R3

Unperturbed Dynamics:

Fast subsystem{
u̇ = 0,
v̇ = u1 + |v|,

Critical manifold

S = {(u, v) ∈ Rn : u1+|v| = 0}

S = S+ ∪ F ∪ S−
S+ = {u1 + v = 0; v > 0}
S− = {u1 − v = 0; v < 0}
F = {u1 = 0, v = 0}

where S+ and S− are normally
hyperbolic and F is the fold
manifold

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative Maximal and faux canards in Rn MMOs in R3

Unperturbed Dynamics:

Fast subsystem{
u̇ = 0,
v̇ = u1 + |v|,

Critical manifold

S = {(u, v) ∈ Rn : u1+|v| = 0}

S = S+ ∪ F ∪ S−
S+ = {u1 + v = 0; v > 0}
S− = {u1 − v = 0; v < 0}
F = {u1 = 0, v = 0}

where S+ and S− are normally
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manifold

S+

S−

F
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Unperturbed Dynamics:

Slow subsystem associated to{
u′ = Au + av + b,

εv′ = u1 + |v|,

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Unperturbed Dynamics:

Slow subsystem{
u′ = Au + av + b,

0 = u1 + |v|,

The slow subsystem is a linear
differential equation defined on
the critical manifold S, but it is
not defined on F . To overcome
this problem, we consider the
Filippov’s convention.

S+

S−

F

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Unperturbed systems

Slow subsystem assocciated to{
u′ = Au + av + b,

εv′ = u1 + |v|,

π : S \ F → Rs \ {v = 0}

ũ = π(u, v) =

{
Pu if v > 0,
u if v < 0

where P = I − 2e1e
T
1 .

Slow subsystem in
Rs \ {eT1 ũ = 0}

ũ′ =

 P (A− aeT1 )P ũ + Pb if eT1 ũ > 0,

(A+ aeT1 )ũ + b if eT1 ũ < 0,

R. Prohens On periodic orbits in singularly perturbed diff. eq.
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Unperturbed systems
Slow subsystem{

u′ = Au + av + b,

0 = u1 + |v|,

To analyze its dynamics, let us
consider a locally conjugate
system defined on
Rs\{eT1 ũ = 0}

π : S \ F → Rs \ {v = 0}

ũ = π(u, v) =
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Pu if v > 0,
u if v < 0
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T
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Unperturbed systems
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u′ = Au + av + b,
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v
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Singularly Perturbed System

Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

Sε = S+ε ∪ S−ε

The manifold Sε = S+ε ∪ S−ε is
a Fenichel’s manifold.

We get the expression of Sε.
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Singularly Perturbed System

Theorem 1.

The manifold Sε = S+ε ∪ S−ε is a Fenichel’s manifold.

S+
ε =

{
(u, v) ∈ Rn : v ≥ 0,

−eT
1 (εA− λ+

n I)
−1u+ v =

ε

λ+
n

eT
1 (εA− λ+

n I)
−1b

}
.

S−
ε =

{
(u, v) ∈ Rn : v ≤ 0,

−eT
1 (εA− λ−

n I)
−1u+ v =

ε

λ−
n

eT
1 (εA− λ−

n I)
−1b

}
.

For ε > 0 and sufficiently small, Sε satisfies:

a) Sε is locally invariant manifold.

b) The flow on Sε is a regular perturbation of the flow on S.
c) S+ε and S−ε are the repelling and the attracting branch, respectively.
d) Given a compact subset Ŝ of the critical manifold S, ∃Ŝε compact

subsets of the slow manifold Sε (diffeomorphic to Ŝ) such that
dH(Ŝε, Ŝ) = O(ε), (dH := Hausdorff distance).

e) Sε is a regular perturbation of S.
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dH(Ŝε, Ŝ) = O(ε), (dH := Hausdorff distance).

e) Sε is a regular perturbation of S.

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative Maximal and faux canards in Rn MMOs in R3

Singularly Perturbed System

Theorem 1.

The manifold Sε = S+ε ∪ S−ε is a Fenichel’s manifold.

For ε > 0 and sufficiently small, Sε satisfies:

a) Sε is locally invariant manifold.

b) The flow on Sε is a regular perturbation of the flow on S.

c) S+ε and S−ε are the repelling and the attracting branch, respectively.
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Maximal Canard Orbits

A point pε in S+ε ∩ S−ε , it is said to be a maximal canard (resp. faux
canard) point if the orbit, γpε , through pε is a maximal canard (resp.
faux canard) orbit.

Sε = S+ε ∪ S−ε

Maximal canard orbits cross
from S−ε to S+ε .
To locate them we study:

Behaviour of the flow on F ,
order of contact of
pε ∈ S+

ε ∩ S−
ε .

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative Maximal and faux canards in Rn MMOs in R3

Proposition. Order of contact

k is the order of contact of the flow with the switching manifold
{v = 0} at p = (u, 0) ∈ P if

k = 1 eTn

((
εA εa
eT1 ±1

)(
u
0

)
+

(
εb
0

))
= eT1 u 6= 0

k ≥ 2

eTn
(
B±ε
)r (

B±ε p + bε
)

= 0, r = 0, 1, . . . , k − 2

s = eTn
(
B±ε
)k−1 (

B±ε p + bε
)
6= 0.

At even contact points, the flow does not cross P
At odd contact points, the flow crosses P
Maximal canard orbits cross throught odd contact points with s > 0.
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Intersection point pε

Study of S+ε ∩ S−ε

Theorem 2. s ≥ 2 and a1j 6= 0 for some j 6= 1

a) S+ε ∩ S−ε is a (n− 3)-D LM. pε = (u, 0) ∈ S+ε ∩ S−ε

u1 =
ε2

λ+nλ
−
n
eT1 A (Aũ + b)

uj = − 1

a1j

b1 +

s∑
k=2,6=j

a1kuk

+O(ε)
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Existence of Maximal Canard Orbits.

Study of S+ε ∩ S−ε

Theorem 2

b) If a1j 6= 0 for some j ∈ {2, . . . , s}, then dim(S+ε ∩ S−ε ) = n− 3

b.1) If u1 > 0, ∃ maximal canard through pε and order of contact 1;
b.2) If u1 < 0, ∃ faux canard through pε and order of contact 1;
b.3) If u1 = 0, order of contact greater than or equal to 2.

c) If a1j = 0 for all j ∈ {2, . . . , s} and b1 = 0, then
dim(S+ε ∩ S−ε ) = n− 2 and neither maximal nor faux canard orbits
exist. Invariant manifold.

d) If a1j = 0 for all j ∈ {2, . . . , s} and b1 6= 0, then S+ε ∩ S−ε = ∅ and
neither maximal nor faux canard orbits exist.
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Source of Maximal Canard Orbits

Theorem 3.

a) Each point pε in S+ε ∩ S−ε lies
in the unfolding of a contact
point of order greater than or
equal to 2 of the slow
subsystem with the fold
hyperplane F .

b) If n = 3, then the maximal
canard point (or faux canard
point) of order 1 lies in the
unfolding of the two-fold
visible-visible (or
invisible-invisible) point of the
slow subsystem.
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Source of Maximal Canard Orbits

Representation of a 2-dimensional reduced flow. Upper panels:
unperturbed case surrounding the invisible two-fold p∗0. Bottom panels:
perturbed flow where the black point p∗ε stands for the faux canard
point, while the white points p+ and p− are the breaking points of p∗0.
These white points are invisible two-fold singularities for S+ε and S−ε .
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Conclusions

R.P., A.E.Teruel, C. Vich
Slow-fast n-dimensional piecewise linear differential systems,
Jour. Diff. Eq. 2016.

Slow-Fast Piecewise Linear System (PWLS)

u̇ =
du

dt
= ε(Au + av + b), v̇ =

dv

dt
= u1 + |v|.

An explicit expression for the slow manifold have been derived

This expression allows to find maximal canard orbits

We obtain the points from where maximal canard orbits perturb

These points are contact points of order greater than or equal to
two of the reduced flow with the fold manifold
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MMOs in PWL slow-fast dynamics in R3

M. Desroches, A. Guillamon, E. Ponce, R.P., S. Rodrigues and A.E.
Teruel
Canards, folded nodes and mixed-mode oscillations in piecewise-linear

slow-fast systems, SIAM Review, in press, 2016.

Slow-Fast Piecewise Linear System (PWLS)

εẋ = −y + f(x), ẏ = p1x+ p2z, ż = p3.

Introduce a theory for slow-fast dynamics by using PWL systems,

and then deriving simplified models that are meaningful for
neuroscience applications.

Idea: reproduce canard-induced MMO behaviour in three-dimensional
PWL slow-fast systems and investigate the equivalent of maximal canards
(primary, secondary) and folded nodes.

R. Prohens On periodic orbits in singularly perturbed diff. eq.



Introduction Qualitative Quantitative Maximal and faux canards in Rn MMOs in R3

MMOs in PWL slow-fast dynamics in R3

M. Desroches, A. Guillamon, E. Ponce, R.P., S. Rodrigues and A.E.
Teruel
Canards, folded nodes and mixed-mode oscillations in piecewise-linear

slow-fast systems, SIAM Review, in press, 2016.

Slow-Fast Piecewise Linear System (PWLS)
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Strategies to construct canard type dynamics in 3D PWL

I Canard trajectories in three-dimensional systems (building up on the
knowledge from the planar case)

From the planar case, the simplest way to consider three-dimensional
models is to put a slow drift on the parameter that displays the canard
(or quasi-canard).

For instance4, for systems in Liénard form

εẋ = y − f(x), ẏ = a− x. (1)

We add a (trivial) slow dynamics on the parameter displaying the
explosion in the planar system. Consider the slow drift

ȧ = c, c ∈ R. (2)

4
M. Wechselberger, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM Journal on Applied Dynamical

Systems, 4 (2005), pp. 101–139.
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Strategies to construct canard type dynamics 3D PWL

I To approximate a quadratic fold of a smooth slow-fast system, we
distinguishing between two-piece local systems and three-piece local
systems given by f .

Hence, (1)+(2),

εẋ = y − f(x),
ẏ = a− x,
ȧ = c.
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Generating mechanism: quasi-canard explosion

f(x) = x+
1

2
(1 + k)(|x− 1| − |x+ 1|)

Transient MMO in a three-dimensional version of the two-piece local
system (1). Parameter values for this transient MMO trajectory are:
ε = 0.1, k = 0.5, c = −0.001.
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Generating mechanism: quasi-canard explosion

1) an explosive behaviour in the
growth of small oscillations

2) no repelling slow manifold

Hence, one can create transient MMO dynamics but not of true canard
type.
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Generating mechanism: canard explosion

f(x) = Fδ(x) =


−x+ (β + 1)δ if x ≥ δ,
βx if |x| ≤ δ,
x− (β − 1)δ if x0 < x < −δ,
−x+ 2x0 − (β − 1)δ if x ≤ x0.

Canard-induced MMOs in transient dynamics exactly as in the smooth
case
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Generating mechanism: canard explosion

Observe:

1) the four-piece PWL critical
manifold

2) a dynamic canard explosion,
and hence, folded node type
dynamics

The parameter values of the critical manifold are the same as in
[AON97], and the speed of the drift is c = −0.01.
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Dynamics near the PWL equivalent of folded singularities

Three-piece local system,

εẋ = −y + f(x)
ẏ = p1x+ p2z
ż = p3, where f = fδ.

fδ(x) =

{
0 if |x| ≤ δ,
|x| − δ if |x| ≥ δ.
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Dynamics near the PWL equivalent of folded singularities

Case p1 > 0: (a) folded saddle, (b) folded node .

In the central zone, H(x, y, z) = εp1(p1x+ p2z)
2 + (p1y − εp2p3)2, is a

first integral. It is either a hyperbola (p1 < 0) or a cylinder (p1 > 0),
with axis x = −p2p1 z, y = εp2p3

p1
. If p1 < 0 no rotation can happen in

this region.
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Dynamics near the PWL equivalent of folded singularities

If p1 > 0, the eigenvalues are ±i√εp1, therefore trajectories do rotate in
this region.

The line segment organises the dynamics of the full system by acting as
an axis of rotation for trajectories that display Small-Amplitude
Oscillations (SAOs) in the central zone, which corresponds to the
so-called weak canard in the smooth case.

It can be proved that the associated maximal winding number µ is
obtained as

µ =
δ

π
√
ε

p1
√
p1

|p2p3|

Note that µ is reminiscent of the eigenvalue ratio at a folded singularity
in the smooth setting
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Dynamics near the PWL equivalent of folded singularities

In the smooth case, this maximal winding number is independent of ε.

Thus, in order to reproduce quantitatively the behaviour observed in the
smooth context, we choose

δ = π
√
ε,

and hence, the maximal winding number is

µ =
p1
√
p1

|p2p3|

This choice gives a complete match (qualitative and quantitative) with
the behaviour of smooth slow-fast systems near folded singularities. That
is,
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Dynamics near the PWL equivalent of folded singularities

the ε-dependence of δ given by

δ = π
√
ε,

forces the central zone collapse to a single corner-line in the singular limit
ε = 0, that is, the three-piece local system for ε > 0 converges, in the
singular limit, to a two-piece local system. Hence,

one can see the central zone, needed to obtain canard dynamics, as
a blow-up of the corner-line that exists in the singular limit.

the size of this blow-up, O(
√
ε), matches that of the smooth case.
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Maximal canards and weak canards

But, are there maximal canards? i.e. explicit solutions passing from the
attracting slow manifold to the repelling one.

It can be shown that, yes.

In particular it can be shown that, indeed, there is a unique maximal
canard, that passes from one side to the other without completing a full
rotation; by definition, this special solution is the primary canard or
strong canard.

There are, also, maximal canards completing full k rotations, for some
values of k, named secondary canards.
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Proposition

Consider p3 > 0, δ = π
√
ε and ε small enough, and assume that every

maximal canard with a given flight time, between the switching planes, is
unique. The following statements hold.

a) If p1 > 0 and p2 < 0, for every integer k with 0 ≤ k ≤ [µ], there
exists a maximal canard γk intersecting the switching plane
{x=−δ} at pk = (−δ, yk, zk) where

yk = −
((

k +
1

2

)
p2p3√
p1

+ p1

)
πε

3
2 − p2p3ε2 +O(ε

5
2 ),

zk = −
(
k +

1

2

)
p3√
p1
π
√
ε+O(ε).

(3)

Moreover, γk turns k times around the weak canard γw, therefore γ0
is the strong canard.
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Proposition

Consider p3 > 0, δ = π
√
ε and ε small enough, and assume that every

maximal canard with a given flight time, between the switching planes, is
unique. The following statements hold.

b) If p1 > 0 and p2 > 0, there exists a unique maximal canard γ0
intersecting the switching plane at p0 = (−δ, y0, z0) where the
coordinates y0 and z0 satisfy equation (3) with k = 0. Since, γ0
turns less that one time around the faux canard γf , therefore γ0 is
the strong canard.

c) If p1 < 0, there are no maximal canards.

Finally, we show on an example how to construct a (linear) global return
and obtain PWL MMOs.
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A PWL example with MMOs

A global return near a PWL folded node, so that we can create
canard-induced MMOs.

First, adding a fourth zone to allow for LAOs

f̃δ(x) =


−x− δ if x ≤ −δ,

0 if |x| ≤ δ,
x− δ if δ < x < x0,
−x+ 2x0 − δ if x ≥ x0.

Then, add linear terms to the z equation in order to obtain a global
return mechanism.

εẋ = −y + f̃δ(x)
ẏ = p1x+ p2z
ż = p3 + α1(x− κ) + α2(y − ζ) + α3(z − ξ).
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Periodic PWL MMO Γ near a folded node. Panels (a1) and (a2) show a
phase-space representation of Γ together with the 4-piece PWL critical
manifold C0; panel (a2) is a zoom of panel (a1) near the central flat
zone, highlighting the SAOs
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Panel (b1) shows the time profile of Γ for the fast variable x. Panel (b2)
shows a similar MMO obtained by imposing conditions so that Γ has
SAOs with a constant amplitude.

MMO in this model have SAOs with increasing amplitude as the
trajectory travels through the central zone. This is simply due to the fact
that the eigenvalues in the central zone have non-zero real part because
of the new terms in the z-equation.
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Quantitative analysis in PWL diff. eq. (Application):

Synaptic conductances estimation in a McKean neuron model.

A. Guillamon, R. P., A.E. Teruel and C. Vich, Estimation of the synaptic
conductance in a McKean-model neuron. Preprint 2016.

To understand the flow of information in the brain,

estimating the synaptic conductances impinging on a single neuron,
directly from its membrane potential, is one of the open problems.

We aim at giving a first proof of concept to address the estimation of
synaptic conductances when the neuron is spiking.
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Simplified model of neuronal activity, namely a piecewise linear version of
the Fitzhugh-Nagumo model, the McKean model

C
dv

dt
= f(v)− w − w0 + I − Isyn,

dw

dt
= v − γw − v0,

where f is a 3-zone piecewise linear function,

f(v) =

 −v v < a/2,
v − a a/2 ≤ v ≤ (1 + a)/2,
1− v v > (1 + a)/2.

variables: membrane potential, v, the fast variable and w the slow
component,

parameters: membrane capacitance, C, 0 < C < 0.1; total current
that the neuron is receiving from non-synaptic inputs, I; v0, w0, γ
and a conductance properties and combinations of membrane
reversal potentials.
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C
dv

dt
= f(v)− w − w0 + I − Isyn,

dw

dt
= v − γw − v0,

we consider the synaptic current5 Isyn = gsyn(v − vsyn) apart from
the total one

gsyn stands for the synaptic conductance and is considered to be
constant

Therefore, Isyn can be understood as a representation of the mean field
of the synaptic inputs.

5
Synaptic current is the movement of charge through the postsynaptic membrane due to synaptic transmission.

The post-synaptic membrane is the membrane of the nerve after the synapse.
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Existence and uniqueness of the periodic orbit

Llibre J, Ordóñez M, Ponce E. On the existence and uniqueness of limit
cycles in planar continuous piecewise linear systems without symmetry.
(2013). Nonlinear Anal. Real World Appl.

If

gsyn > 1− 1

γ
, I1 < I < I2 and |gsyn + Cγ| < 1,

Th.1 gives that there exists a limit cycle which is unique and stable.
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⇒ At a first step, we infer steady synaptic conductances from the cell’s
oscillatory activity.

The idea is to get gsyn as follows:

If we could get the analytical expression of the period of oscillation
T (gsyn), and

If we could know the period of oscillation, T̃ , then

Then, we could estimate the value of gsyn by solving

T (gsyn) = T̃ (inverse problem)

In practice...
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to solve

T (gsyn) = T̃ , (inverse problem)

we approximate T (gsyn) and T̃ by

Ta an analytical approximation of T (gsyn)

T̃a a numerical approximation of the period of oscillation of T̃ .

and then we solve
Ta(gsyn) = T̃a → gsyn,a

instead.
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Steady synaptic conductances estimation

a/2 (1+a)/2

Tlateral =
1

2λs
ln

(∣∣∣∣ γ(I − Ii)
γ(I − Ii)−K

∣∣∣∣)
Tcentral =

1

2λq
ln

(∣∣∣∣γ(I − Ii) +K1,i

γ(I − Ii) +K2,i

∣∣∣∣) , i = 1, 2.

Tlateral stands for TL when i = 1 and for TR when i = 2. Tcentral stands
for Tc,up when i = 1 and for Tc,down when i = 2. K, K1,i and K2,i are
functions depending on the system parameters and they have a non-linear
dependence with gsyn.
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Relative error when we estimate the synaptic conductance. Different
traces correspond to different values of gsyn
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(A) versus the applied current, I, for C = 10−4.

(B) versus the membrane capacitance, C, for I = I1 + 10−3

a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2.
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Variable synaptic conductances estimation

We want to estimate gsyn when the neuron is regularly spiking.

Idea:

1 Solve McKean system using the RK78 method.

2 Once we have v(t), we find the different peaks of v(t) and we
compute the differences in time to obtain the sequence of periods
{T1, . . . , Tk}.

3 For each Tk we get gksyn by using the steady synaptic conductance

estimation for T (gksyn, C, I) = Tk.

4 We interpolate to obtain gsyn(t).
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Computational network that models layer 4Cα of primary visual cortex
(McLaughlin et al (2000) and Tao et al (2004)).
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Estimation: Panel A shows the real and the estimated conductances vs
time. The estimation fits the synaptic conductance with a small shift
which is larger as C increase. C = 0.001.
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B and C: scatter plot of the real vs the estimated
Panel B: after interpolation; Panel C: only with estimated values.
Parameters: a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2, C = 0.001 µF/cm2 ,

I = 0.625 µA/cm2 , gsyn(t0) = 0.6278.
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Thanks for your attention,
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