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In this study we analyze the following spruce budworm system of
equations



























Ṅ(t′) = rN(t′)
(

1− N(t′)
kS(t′)

)

− β
P(N(t′))2

η2(S(t′))2+(N(t′))2 ,

Ṡ(t′) = ρS(t′)
(

1−
∫ t′

−∞
W(t′−z)S(z)dz

Smax

)

− δN(t′).
(1.1)

where k and Smax are the effective carrying capacity coefficient for
budworm and spruce respectively, β and δ are two different
timescale of budworm and spruce respectively, P is the maximal
loss of budworm due to higher order predators, η is the effective
regulation coefficient for the predation pressure.
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The distributed delay represented by the weight function W(s) : R+

→ R+ satisfies W(s) ≥ 0 and
∫ ∞

0 W(t)dt = 1. In this paper W(s)
defined by

W(s) = a2se−as, a > 0, (1.2)

which is term as the so-called strong generic kernel function
(memory with hump) and is a particular case of the Gamma
Function described by Fargue. The ”strong” generic kernel implies
that a particular time in the past is more important than any other.
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⋆ By means of a change of variables,we first transform system
(31) with the strong delay kernel into a four-dimensional system of
differential equations.
⋆ By linearizing the resulting four-dimensional system at the
positive equilibrium and analyzing the associated characteristic
equation, the Hopf bifurcations are demonstrated. In particular, by
applying geometric singular perturbation theory, the approximate
expression of the relaxation oscillation and its period are obtained
analytically.
⋆ To verify our theoretical predictions, two numerical simulations
are also included in part three.
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We define two new variables as

Q(t′) =
∫ t′

−∞

W(t′ − z)S(z)dz = a2
∫ t′

−∞

(t′ − z)S(z)e−a(t′−z)dz,

and

R(t′) = a
∫ t′

−∞

S(z)e−a(t′−z)dz.



Introduction The model equation Slow-fast dynamics Numerical example

We have

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
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










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



ε dZ
dτ = YF0

(

Z
Y , Y;α2

)

,

dY
dτ = Yf

(

Z
Y ,V; ̺, Ymax

)

,

dV
dτ = f ∗

(

V ,U; a
)

,

dU
dτ = g∗

(

Y ,U; a
)

,

(2.1)

Remark 1: The model with the delay kernel W(s) is very hard to
analyze. So authors use many methods to eliminate delay. By
defining new variables and using the linear chain trick technique,
the original model can be rewritten as the equivalent systems (2.1)
without delay. But the price is the dimension of equations would be
increased from two to four. Although the model becomes to the
four-dimensional system (2.1), the variables U and V of the
systems do not play a major role. Therefore, we only need to
analyze the first two equations of (2.1).
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where

F0

(

X, Y;α2
)

= X(1− X) −
1
Y
·

X2

α2 + X2
,

f
(

X,V; ̺, Ymax

)

= 1−
V

Ymax
− ̺X,

f ∗
(

V ,U; a
)

= a(U − V),

g∗
(

Y ,U; a
)

= a(Y − U),

and 0 < ε ≪ 1.
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Introduce a fast time variable t = τ
ε
, and denote Z(t) = Z(εt),

Y(t) = Y(εt), V(t) = V(εt) and U(t) = U(εt), then Eq. (2.1) becomes


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






































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









dZ
dt = YF0

(

Z
Y , Y;α2

)

,

dY
dt = εYf

(

Z
Y ,V; ̺, Ymax

)

,

dV
dt = εf

∗

(

V ,U; a
)

dU
dt = εg

∗

(

Y ,U; a
)

.

(2.2)
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Let ε→ 0 in Eq. (2.2), one has a fast subsystem governing the fast
variable only

dZ
dt
= YF0

(Z
Y
, Y;α2

)

, (2.3)

where Y is regarded as a parameter.
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Firstly, the geometric singular perturbation theory defines the slow
manifold of Eq. (2.2) as the equilibriums of the fast subsystem Eq.
(2.3)

M =

{

(Z, Y ,V ,U) | YF0

(Z
Y
, Y;α2

)

= 0
}

,

=

{

(Z, Y ,V ,U) | Y =
X

(α2 + X2)(1− X)

}

, (3.1)

where X = Z
Y .
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In the following discussion, the case with δ -shape curve of the
slow manifold is focused on, correspondingly, let α2 satisfy
0 < α2 < 1

27(see Fig.1).

Y = YIX ; Α2M
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Fig.1 The case with δ -shape curve of the slow manifold with the
Projection on (X, Y) plane.
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For any equilibrium point (Y0,X0), the linearized system is

dZ
dt
=

[

1− 2X0 −
2α2X0

Y0(α2 + X2
0)2

]

Z(t). (3.2)

In the slow manifold M, the one eigenvalue of Eq. (3.2) is

λ = 1− 2X0 −
2α2X0

Y0(α2 + X2
0)2
.

As for λ, there are two critical points X1 and X2 satisfy with
0 < X1 <

1
3 < X2 ≤

1
2 < 1 such that λ > 0 with X0 ∈ (X1,X2) and

λ < 0 with X0 ∈ (0,X1)
⋃

(X2, 1).



Introduction The model equation Slow-fast dynamics Numerical example

And the slow manifold M is divided into three parts by the
bifurcation points B1 and B2

M = M1 +M2 +M3.

M2

M3
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Fig.2 The structure of the slow manifold M of Eq. (2.2)with the Projection
on (X, Y) plane, where B1 and B2 are the saddle-note bifurcation points.
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Next, we consider the location and stability of the equilibrium
points of Eq. (2.2).

Y = P HX ; Ymax, ·L

Y = YIX; Α2M
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Fig.3 Different cases of the number and location of the equilibrium
points of Eq. (2.2) with the Projection on (X, Y) plane.
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To decide the stability of those equilibrium points, consider the
characteristic equation

D(λ) = λ4
+ bλ3

+ cλ2
+ dλ + e = 0. (3.3)

where

b = ε(2a − ̺X0),

c = ε(a2
+ ̺X0 − ̺X

2
0) − ε2 · 2a̺X0,

d = ε2[a̺X0(2− 2X0 − a) +
a2Y0

Ymax
],

e = ε2a2̺X0(1− X0).
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Thus, when the equilibrium point (Z0, Y0,V0,U0) ∈ M2 and ̺ > 2a
X0

or ̺X0(2− 2X0 − a) + aY0
Ymax
< 0, then those equilibrium points locate

in M2 is unstable. When the equilibrium point (Z0, Y0,V0,U0) ∈ M1
⋃

M3 and the proper adjustment of ̺, Ymax and a satisfy with ̺ < 2a
X0

and ̺X0(2− 2X0 − a) + aY0
Ymax
> 0, then those equilibrium points

locate in M1
⋃

M3 are stable.
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Remark 2: The original model in reference[A Rasmussen, J
Wyller, J O Vik] is a 2D system. The authors used tr(J) and det(J)
to judge the positive and negative of eigenvalues. However, the
corresponding characteristic equation of our model is a quartic
equation. Thus, the positive and negative judgment of eigenvalues
is more complicated. Through the analysis of characteristic
equation, the positive and negative of characteristic roots was
obtained.
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Fig.4 The relaxation oscillation of Eq. (2.2) with the Projection on (X, Y)
plane.
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Remark 3: Reference[A Rasmussen, J Wyller, J O Vik] used the
attraction domain of the upper and lower stable branch of the
quasi-steady state to judge the the clockwise direction of the
relaxation oscillation. In this paper, we used sign of dY

dτ to judge the
the clockwise direction of the the relaxation oscillation. This
method is more simple and clear in comparison.
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The relaxation oscillation of (1.1) is described approximately as




























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























Y =
X

(X2 + α2)(1− X)
, X ∈ (X∗2,X1],

Z = Y1X1, X ∈ (X1,X
∗
1],

Y =
X

(X2 + α2)(1− X)
, X ∈ [X2,X

∗
1),

Z = Y2X2, X ∈ [X∗2,X2), (3.4)

where
X∗i

((X∗i )2+α2)(1−X∗i ) = Y∗i .
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T =

∫

M1

dτ +
∫

M3

dτ + O(ε)

≈

∫

M1

dY
Yf (X,V; ̺, Ymax)

+

∫

M3

dY
Yf (X,V; ̺, Ymax)

=

∫ X1

X∗2

Ψ
′(X)dX

Ψ(X)f (X,Ψ(X); ̺, Ymax)
+

∫ X∗1

X2

Ψ
′(X)dX

Ψ(X)f (X,Ψ(X); ̺, Ymax)

= Ymax

(

∫ X1

X∗2

P3(X)dX
XP4(X)

+

∫ X2

X∗1

P3(X)dX
XP4(X)

)

, (3.5)

where P4(X) = Ymax̺X4 − Ymax(1+ ̺)X3
+ Ymax(1+ α2̺)X2

−(1+ α2Ymax +α
2̺Ymax)X +α2Ymax.
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Proposition If one of the following two conditions is hold
(H1) max{ 1

X2
, 2a

X2
, 2a

X1
} < ̺ < 1

X1
, −Ymax̺ < −

Y1
X2−X1

;

(H2) 1
X2
< ̺ < 1

X1
,−Ymax̺ < −

Y1
X2−X1

and ̺Xi(2− 2Xi − a) + aYi
Ymax

< 0(i = 1, 2),
then the predator-prey system undergoes relaxation oscillation,
and the analytical expressions of the relaxation oscillation and its
period are described approximatively as Eqs. (3.4) and (3.5)
respectively.
Remark 4: Conditions H1 and H2 are incompatible.
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Example 1. Let ε = 0.001, α2
= 0.0085, Ymax = 16,

̺ = 5.5, a = 0.2, Eq.(2.2) reads


















































dZ
dt = Y

[

X(1− X) − 1
Y ·

X2

0.0085+X2

]

,

dY
dt = εY

(

1− V
16 − 5.5X

)

,

dV
dt = 0.2ε(U − V),
dU
dt = 0.2ε(Y − U),

(4.1)

where X = Z
Y .
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By calculating on the platform of Mathematica, we have
X1 = 0.103536, X2 = 0.481682, Y1 = 6.00913, Y2 = 3.86382,
X∗1 = 0.792927, X∗2 = 0.0366351, 1

X2
= 2.07606, 1

X1
= 9.65845. It is

easy to see that max{ 1
X2
, 2a

X2
, 2a

X1
} < ̺ = 5.5 < 1

X1
, −Ymax̺ = −88

< −
Y1

X2−X1
= −15.891. The system undergoes relaxation oscillation,

this result is confirmed by the numerical result in Fig.5.
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From Eq. (3.4), the approximate expression of the relaxation
oscillation is



















































Y =
X

(X2 + α2)(1− X)
, X ∈ (0.0366351, 0.103536],

Z = 0.622161, X ∈ (0.103536, 0.792927],

Y =
X

(X2 + α2)(1− X)
, X ∈ [0.481682, 0.792927),

Z = 1.86113, X ∈ (0.0366351, 0.489569). (4.2)

From Eq.(3.5), one obtains the approximate period of the
relaxation oscillation Tappr = 1.4124, which agrees with the
numerical result T = 1.76242.
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Fig.5 The relaxation oscillation of Eq. (4.1).
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Example 2. Let ε = 0.001, α2
= 0.0085, Ymax = 32, ̺ = 4, a = 3.7,

Eq.(2.2) reads























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








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







dZ
dt = Y

[

X(1− X) − 1
Y ·

X2

0.0085+X2

]

,

dY
dt = εY

(

1− V
32 − 4X

)

,

dV
dt = 3.7ε(U − V),
dU
dt = 3.7ε(Y − U),

(4.3)

where X = Z
Y .
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Since 1
X2
< ̺ = 4 < 1

X1
, −Ymax̺ = −128< − Y1

X2−X1
= −15.891,

̺X1(2− 2X1 − a) + aY1
Ymax
= −0.0949968< 0 and ̺X2(2− 2X2 − a)

+
aY2
Ymax
= −4.68482< 0, the system undergoes relaxation oscillation.

This result is confirmed by the numerical result in Fig.6. From
Eq.(3.5), one obtains the approximate period of the relaxation
oscillation Tappr = 0.94409, which agrees with the numerical result
T = 1.05677.
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Fig.6 The relaxation oscillation of Eq. (4.3).

Remark 5: Though the two phase planes look very similar for the
two cases, they represent two different cases which satisfied
incompatible conditions H1 and H2.
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◮ model (1.1) with delay kernel
→ system (2.2) without delay

◮ slow manifold M






































shape

stability

bifurcation

location and stability of the equilibrium point

◮ Proposition
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Thank you!
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