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The topic

• Quasi-steady state (QSS) reduction: Strange method to reduce dimension of
(bio-)chemical reaction equations.

• Pragmatic view: Strange but often successful.

• Today: The mathematical side of QSS.
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First example

Michaelis-Menten equation (“irreversible”)

ṡ = − k1e0s + (k1s + k−1)c,
ċ = k1e0s − (k1s + k−1 + k2)c

with positive parameters.

Quasi-steady state for complex concentration c:

• Assume ċ = 0, thus k1e0s − (k1s + k−1 + k2)c = 0.

• Solve for c as function of s.

• Substitute in first equation to get ṡ = −k1k2e0s/(k1s + k−1 + k2).

• Is this legal? If it is, why?
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Objects

Parameter-dependent ordinary differential equations

ẋ = h(x , π); (x , π) ∈ Rn × Rm

with polynomial (or rational) right-hand side.

Motivation: Chemical reaction networks, mass action kinetics, thermodynamic
parameters fixed.

Bonus: Explicit computations become feasible (algorithmic algebra).
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Objectives

• Take this strange reduction procedure seriously.

• Determine conditions so that procedure is (approximately) legal from a
mathematical perspective.

• Determine (all) parameters for which procedure is legal.

• Relation to singular perturbation reductions (Tikhonov, Fenichel).
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Benchmark example: Reversible Michaelis-Menten

Reaction scheme

E + S
k1


k−1

C
k2


k−2

E + P

leads to differential equation system for the concentrations:

ṡ = −k1es + (k1s + k−1)c,
ċ = k1es − (k1s + k−1 + k2)c + k−2ep,
ė = −k1es + (k1s + k−1 + k2)c − k−2ep,
ṗ = k2c − k−2ep.

Stoichiometry (linear first integrals e + c and s + c + p) and initial conditions:

ṡ = − k1e0s + (k1s + k−1)c,
ċ = k1e0s − (k1s + k−1 + k2)c + k−2(e0 − c)(s0 − s − c).
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QSS for reversible Michaelis-Menten

Differential equation

ṡ = − k1e0s + (k1s + k−1)c,
ċ = k1e0s − (k1s + k−1 + k2)c + k−2(e0 − c)(s0 − s − c),

QSS reduction for complex C :
Condition ċ = 0 yields quadratic equation for c = c(s), etc. (Manageable, but
unwieldy.)

Singular perturbation reduction with “small parameter” e0 → 0 yields reduced
equation

ṡ = −e0
k1k2s + k−1k−2(s − s0)

k1s + k−1 + k2 + k−2(s0 − s)

Correspondence: This is the first order term in expansion of QSS reduction!
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QSS reduction in general I

Given a (polynomial or rational) system

ẋ = h(x , π) =

h1(x , π)
...

hn(x , π)


Notation: For 1 6 r < n set

x [1] := (x1, . . . , xr)
tr; x [2] := (xr+1, . . . , xn)tr;

h[1] := (h1, . . . , hr)
tr; h[2] := (hr+1, . . . , hn)tr;

Yπ := {x ∈ Rn; h[2](x , π) = 0}.
The reduction procedure (underlying reasoning):

• Underlying assumption: QSS with respect to “chemical species”
x [2] := (xr+1, . . . , xn)tr.

• Solve h[2] = 0 for x [2] as function of x [1]. Substitute in h[1].

• This should work on the zero set Yπ of h[2].
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QSS reduction in general II

Necessary conditions for existence of reduction (with π = π∗ fixed):

• The zero set Yπ∗ should be nonempty. Let y ∗ ∈ Yπ∗.

• Full rank of (x1, . . . , xr , hr+1, . . . , hn)tr at y ∗.

Definition. For π near π∗ the following equation will be called a QSS-reduced
equation of ẋ = h(x , π) on Uπ, given QSS for xr+1, . . . , xn:

ẋ [1] = h[1](x , π)
ẋ [2] = −D2h

[2](x , π)−1D1h
[2](x , π)h[1](x , π)

; briefly ẋ = hred(x , π).

(Here Di denotes the partial derivative with respect to x [i ].)

Note. This is an equivalent implicit version of ẋ [1] = h[1](x [1],Ψ(x [1])) whenever
h[1](x [1], x [2]) = 0 is being solved to yield x [2] = Ψ(x [1]).
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(When) does QSS reduction make sense?

Consider

ẋ = h(x , π) versus
ẋ [1] = h[1](x , π)
ẋ [2] = −D2h

[2](x , π)−1D1h
[2](x , π)h[1](x , π)

Minimal requirement: Approximate correctness.

Proposition. The solutions of both systems starting on Uπ are equal if and only if
Uπ is invariant for the first.

Definition: Call π∗ a QSS parameter value with respect to the species xr+1, . . . , xn
if the rank condition holds at some y∗ for h[2] = (hr+1, . . . , hn) and Uπ∗ is invariant.

Proposition. The solutions of both systems starting on Uπ are approximately
equal (in a well-defined sense) if and only if π is close to a QSS parameter value π∗.

Consequence: It suffices to search for QSS parameter values.
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Finding QSS parameter values I

Exploit invariance and rank conditions for Uπ to get:

Proposition. Let the polynomial system ẋ = h(x , π) be given, let π∗ be a QSS
parameter value with respect to xr+1, . . . , xn, and let y∗ ∈ Yπ∗ satisfy the rank
condition. Then (y∗, π∗) lies in the ideal J ⊆ R[x , π] generated by the polynomials

• hr+1, . . . , hn;

• Lh(hr+1), . . . , Lh(hn) (Here Lh denotes the Lie derivative);

• all (n − r + 1)× (n − r + 1) minors of the Jacobians of
hr+1

...
hn

Lh(hk)

 , r + 1 6 k 6 n.
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Finding QSS parameter values II

Notation. Call π∗ a QSS-critical parameter value if (y∗, π∗) ∈ J for some y∗.
Then π∗ is a QSS parameter value if and only if y∗ can be chosen such that the
the rank condition holds.

Observations.

• The number of defining equations for the ideal J is greater than the number of
variables x1, . . . , xn. (“More equations than variables!”)

• The elimination ideal J ∩ R[π] provides conditions on parameters.

• Algorithmic algebra (Groebner bases etc.) can be put to work. (Initially standard
methods suffice.)
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Example

QSS-critical parameter values for irreversible Michaelis-Menten;
QSS for substrate s:

ṡ = − k1e0s + (k1s + k−1)c =: θ,
ċ = k1e0s − (k1s + k−1 + k2)c

Consider ideal J generated by

θ, Lh(θ) = −(k1(e0 − c) + k1s + k−1)θ − (k1s + k−1)k2c

and their Jacobian determinant. Eliminate s and c.

Result: The radical of the elimination ideal is generated by e0k1k2k−1. In other
words, any QSS-critical parameter value π∗ = (e∗0 , k

∗
1 , k

∗
2 , k

∗
−1) must have one entry

zero.

Remark: This yields “small parameters” e0, resp. k1, resp. k2, resp. k−1.
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Example (cont.)

Irreversible Michaelis-Menten, QSS for s; QSS-critical parameters.

Some cases:

• For k−1 = 0 (other parameters > 0) one has
invariant set given by s = 0. (Regular perturbation
problem for small k−1.) s

c

• For k2 = 0 (other parameters > 0) one has
invariant set given by k1e0s − (k1s + k−1)c = 0. All
points on this set are stationary: Singular
perturbation problem! s

c

• For e0 = 0 (other parameters > 0) one has
invariant set given by c = 0. All points on this set
are stationary: Singular perturbation problem! s

c
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Structure in greater detail

QSS parameter values provide further invariant sets:

Proposition. Given ẋ = h(x , π), consider QSS with respect to species
xr+1, . . . , xn, and let π∗ be a QSS parameter value, with local invariant manifold
Uπ∗. Then every set

Uπ∗ ∩ {x ; xr+1 = γr+1, . . . , xn = γn}
(with constants γr+1, . . . , γn) is also invariant for
ẋ = h(x , π∗). s

c

Remarks.

• This property frequently forces singular settings, i.e. existence of non-isolated
stationary points.

• Natural question: How reliable is QSS reduction in singular circumstances?
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Singular settings: A view of the problem

Notation. Near a QSS parameter value π∗, consider π∗ + δρ with some ρ ∈ Rm,
δ > 0 and write

h(x , π∗) =: h0(x), h(x , π∗ + δρ) = h0(x) + δh1(x) + · · · ;

similarly for h[1] and h[2]. QSS reduction up to first order in δ:

ẋ [1] = h
[1]
0 (x) + δh

[1]
1 (x)

ẋ [2] = −D2h
[2]
0 (x)−1D1h

[2]
0 (x)h

[1]
0 (x) + δq(x)

with some (complicated) q.

Singular setting: h
[1]
0 has non-isolated zeros on Uπ∗.

Fully singular setting: If h
[1]
0 vanishes on Uπ∗ then we have reduction

ẋ [1] = δh
[1]
1 (x)

ẋ [2] = −δD2h
[2]
0 (x)−1D1h

[2]
0 (x)h

[1]
1 (x)

Realistic? Dependence theorem guarantees only order zero in δ!
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Digression: Singular perturbations (slow/fast separation given)

Classical singular perturbation theory (Tikhonov, Fenichel): System in standard
form with “fast and slow variables” separated:

ẏ [1] = εf1(y
[1], y [2]) + ε2 · · · ; y [1]

′
= f1(y

[1], y [2]) + ε · · · ;

ẏ [2] = g0(y
[1], y [2]) + ε · · · ; ε−1y [2]

′
= g0(y

[1], y [2]) + ε · · ·
(in fast and slow time scales); ε > 0 parameter. Interest in behavior near ε = 0.

Conditions.
• Z := {y ; g0(y) = 0} 6= ∅ and D2g0(y) invertible for all y ∈ Z .
• There is σ > 0 so that all eigenvalues of D2g0(y), y ∈ Z have real part ≤ −σ.
• By implicit function theorem: Parameterization y ∈ Z ⇔ y [2] = Γ(y [1]).

Theorem. Given above conditions, there is a compact interval J such that
solutions of system (in slow time) converge toward solutions of reduced system

y [1]
′

= f1(y
[1], Γ(y [1]))

on J , uniformly in ε. Moreover, for every small ε the system admits an invariant
“slow manifold” near Z .
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Digression: Singular perturbations “in the wild”

Given system ẋ = h(x , π), a parameter π̂ is called a Tikhonov-Fenichel (TF)
parameter value for dimension s (1 6 s 6 n − 1) of the system whenever the
following hold:

(i) The zero set V(h(·, π̂)) of x 7→ h(x , π̂) contains a local submanifold Ṽ of
dimension s.

(ii) There is a point x0 ∈ Ṽ such that Dh(x , π̂) has rank n − s and

Rn = Ker Dh(x , π̂)⊕ Im Dh(x , π̂) for all x ∈ Ṽ near x0.

(iii) The nonzero eigenvalues of Dh(x0, π̂) have real part < 0.
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TF parameter values: Properties

Motivation. If π̂ is a TF parameter value, and ρ ∈ Rm, then one has classical
singular perturbation scenario for

ẋ = h(x , π̂ + ερ) as ε→ 0.

Note: This holds up to a coordinate transformation!

Remark. TF parameter values are accessible to algorithmic algebra; see Condition
(i) on non-isolated stationary points.

Theorem. The TF parameter values form a semi-algebraic variety in parameter
space.
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Singular perturbations “in the wild” (reduction)

Given ẋ = h(x , π) with TF parameter value π̂ and some (suitable) ρ ∈ Rm:

• One has reduction for

ẋ = h(x , π̂ + ερ) = h(x , π̂) + εq(x) + · · · , as ε→ 0.

• To determine a reduced system on Ṽ explicitly, use a decomposition

h(x , π̂) = P(x , π̂)µ(x , π̂)

in some neighborhood of x0 ∈ Ṽ ; P is Rn×(n−s)-valued, and Ṽ is the vanishing
set of the R(n−s)-valued function µ.
(Algorithmic algebra: standard bases.)

• A(x , π̂) := Dµ(x , π̂)P(x , π̂) is invertible on Ṽ . Reduced system Ṽ in fast time:

ẋ = ε ·
(
In − P(x , π̂)A(x , π̂)−1Dµ(x , π̂)

)
q(x).

(Only linear algebra involved!)
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Matching QSS and SPT – Experimental observations

• QSS and singular perturbation reduction coincide in some relevant cases (e.g.
irreversible Michaelis-Menten, small parameter e0).

• The reductions coincide up to lowest order in small parameter in even more
cases (such as reversible Michaelis-Menten, small parameter e0):

ṡ = something complicated involving square roots
= −e0(k1k2s + k−1k−2(s − s0))/(k1s + k−1 + k2 + k−2(s0 − s)) + t.h.o.

(expand in powers of e0).

• This fact explains the usefulness and popularity of QSS reduction.
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Matching QSS and SPT – Counterexample

Irreversible Michaelis-Menten with slow product formation.

ċ = k1e0s − (k1s + k−1 + k2)c,
ṡ = − k1e0s + (k1s + k−1)c,

small parameter ε = k2; other parameters > 0.

Tikhonov-Fenichel reduction on Ṽ (determined by µ := k1e0s − (k1s + k−1)c = 0)
provides

ṡ = − k2k1e0s (k1s + k−1)

k−1e0 + (k1s + k−1)2
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Counterexample, continued

QSS reduction for complex with small parameter k2 yields

ṡ = − k2k1e0s

k1s + k−1 + k2
= − k2k1e0s

k1s + k−1
+ · · ·

(lowest order in k2).

Compare with Tikhonov-Fenichel reduction (slightly rewritten):

ṡ = − k2k1e0s

k−1e0/(k1s + k−1) + (k1s + k−1)

Considerable discrepancy: QSS reduction procedure yields incorrect result!
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Matching QSS and SPT II

Definition. Let π∗ be a QSS parameter value of ẋ = h(x , π), with respect to
species xr+1, . . . , xn.

We say that QSS near π∗ is consistent with the singular perturbation reduction if:

• π∗ is also a Tikhonov-Fenichel parameter value;

• the (asymptotic) slow manifold Ṽ coincides locally with Uπ∗;

• the reductions are in agreement up to first order.
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Matching QSS and SPT III

A consistency result:

Proposition. Let π∗ be a QSS parameter value of ẋ = h(x , π), which is also a TF
parameter value.
If Ṽ coincides locally with Uπ∗, and if Uπ∗ is open-dense in some “affine coordinate
subspace” Zγ∗ = {x ; xr+1 = γ∗r+1, . . . , xn = γ∗n} with constants γ∗i , then the QSS
reduction is consistent with the singular perturbation reduction.

Note. This explains Michaelis-Menten for small e0.
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Application: A problem vanishes

Frequent (frequently suppressed) problem with QSS reduction: There may be no
explicit solution x [2] = Ψ(x [1]) for h[1](x [1], x [2]) = 0. (Recall Abel’s theorem.)

Example. (Pantea et al.)

ȧ = k2by − k4ax + 2k5z
2

ḃ = 2k1y
2 − 2k−1b

2 − k2by − k3bz + k−3x
2 + k4ax

ẋ = 2k3bz − 2k−3x
2 − k4ax

ẏ = −2k1y
2 + 2k−1b

2 − k2by + k4ax
ż = k2by − k3bz + k−3x

2 − 2k5z
2

QSS assumption and reduction with respect to x , y , z : Polynomial system not
solvable via radicals.

But: For QSS parameter value k−1 = 0 (all other parameters > 0) we have
invariant plane given by x = y = z = 0, and QSS reduction is consistent with
singular perturbation reduction.

26 of 30 Hefei 2016 - Sebastian Walcher



A problem vanishes (cont.)

Use singular perturbation reduction with small parameter k−1 and decompositionẋ
ẏ
ż

 =

−k4a 0 2k3b
k4a −k2b 0
0 k2b −k3b

x
y
z

 +

...

 + k−1

 0
2b2

0


etc. to arrive at reduced system

ȧ = 2k−1b
2

ḃ = −2k−1b
2

Conclusion: There are cases where QSS reduction provides incorrect results (and,
in addition, algebraic problems may persist). But in many relevant applications one
has a feasible alternative approach (and essentially no algebraic obstacles).
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Some open questions

Among other things:

• Workable version of conditions for QSS (and TF) parameter values.

• Make use of special properties of reaction systems to improve algorithms.

• Compare to other approaches to QSS (slow-fast heuristics).
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Thank you for your attention!
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