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Introduction

• Collision process is also known as Interference.

1. Constructive Interference
2. Destructive Interference

• Head-on collision is the phenomenon that occurs when two waves
meet while traveling along the same medium.

• Linear waves works on the principle of superposition.

• Solitary waves are nonlinear waves that do not obey the principle of
superposition.

• Hydroelasticity is related to the deformation of elastic bodies
responding to hydrodynamic excitations and concurrently the
modification of these excitations owing to the body deformation.
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Introduction

Fig: 1. (a) Overtaking collision, (b) head-on collision
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Applications

Fig: 1. Ice Sheet in Antarctica [1]

[1]http://antarcticsun.usap.gov/aroundTheContinent/contentHandler.cfm?id=4108
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Applications

(a) (b)

Fig: 3. (a) Floating hotel[2], (b) Lilypad[3]

[2]http://www.techinsider.io/morphotel-floating-bending-hotel-luxury-2015-12
[3]http://vincent.callebaut.org/page1-img-lilypad.html
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Applications

(a) (b)

Fig: 4. (a) Mobile offshore base[4], (b) Mega float in Tokyo bay[5]

[4]http://www.combatreform.org/itstimetojointheMOB.htm
[5]Tokyo Bay (VLFS), named Mega Float with dimensions of 1000m in length and 120m width.
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Mathematical Modeling

Fluid properties

1. Flow is Inviscid

2. Flow is Irrotational

3. Flow is Incompressible

4. Constant density (ρ)

5. Flow is potential (φ)

Geometrical properties

1. Cartesian coordinate (x , z)

2. Finite depth (0 < z < H)

3. Ice sheet (z = H)

4. Thin elastic plate

5. Air effect neglected
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Governing Equation and boundary conditions

Laplace equation

∇2φ = 0, (0 < z < H). (1)

Bottom boundary condition

∂φ

∂z
= 0, z = 0. (2)

Kinematic boundary condition

∂H

∂t
+∇φ · ∇H =

∂φ

∂z
, z = H . (3)
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Governing Equation and boundary conditions
Dynamic boundary condition

∂φ

∂t
+ gH +

1

2
|∇φ|2 +

D

ρ

(
κss +

1

2
κ3

)
= B(t). (4)

Curvature term

κ =
Hxx

(1 + H2
x )3/2

, (5)

and

H = 1 + ζ,U = ε(α + β), ζ = ε(α− β). (6)

where D = Ed3/
[
12
(
1− ν2

)]
, B(t) is the Bernoulli constant, d is the

thickness of the plate, ν is the poisson’s ratio, E is Young’s Modulus,
respectively.
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Solution of the Problem

• Poincaré–Lighthill–Kuo[6] (PLK) method.

• This method is Derived from method of strained coordinates by
Poincaré in 1892 for ordinary differential equation.

• Later, Lighthill (1949) and Lin (1954) introduced this method for
hyperbolic partial differential equations.

• There are three different groups of terms to be integrated in each
order of approximation:

1. Secular terms.
2. Local terms.
3. Non-local terms.

To proceed further, we define the following transformations of wave frame
coordinates with phase functions

ξ = ε
1
2 KR(x − CRt) + εKRθ(ξ, η), η = ε

1
2 KL(x + CLt) + εKLϕ(ξ, η),

(7)

[6]Van Dyke, M. (1975). Perturbation methods in fluid mechanics/Annotated edition. NASA
STI/Recon Technical Report A, 75.
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Solution of the Problem

In Eq. (7) ε is the dimensionless parameter which describes the amplitude
of the wave and order of the magnitude where (0 < ε � 1). KR, KL are
the wave numbers of left and right going wave of order unity. According
to PLK method, we introduce the following expansion

α(ξ, η) = α0 + εα1 + ε2α2 + . . .

β(ξ, η) = β0 + εβ1 + ε2β2 + . . .

θ(ξ, η) = θ0(η) + εθ1(ξ, η) + ε2θ2(ξ, η) + . . .

ϕ(ξ, η) = ϕ0(ξ) + εϕ1(ξ, η) + ε2ϕ2(ξ, η) + . . .

CR = 1 + εaR1 + ε2a2R2 + +ε3a3R3 . . .

CL = 1 + εbL1 + ε2b2L2 + ε3b3L3 . . . (8)

where R1,R2,R3, . . . and L1, L2, L3 . . . are the parameters for removing
secular terms in the perturbation solution.
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Solution of the Problem

ξ and η represents the right going and left going phase variables, θ and
ϕ describes the factors regarding phase shifts, a and b are the amplitude
factors. we attain the following transformations between derivatives as

∂

∂t
+ CR

∂

∂x
=
ε

1
2

D
(CR + CL)

[
KL

∂

∂η
+ εKRKL

(
∂θ

∂η

∂

∂ξ
− ∂θ

∂ξ

∂

∂η

)]
,

(9)

∂

∂t
− CL

∂

∂x
= −ε

1
2

D
(CR + CL)

[
KR

∂

∂ξ
+ εKRKL

(
∂ϕ

∂ξ

∂

∂η
− ∂ϕ

∂η

∂

∂ξ

)]
,

(10)

where

D =

(
1− εKR

∂θ

∂ξ

)(
1− εKL

∂ϕ

∂η

)
− ε2KRKL

∂θ

∂η

∂ϕ

∂ξ
. (11)
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Results

(a) Interfacial surface elevation can be written as:

ζ = C1A + C2A
2 + C3B + C4B

2 + C0AB + . . . , (12)

(b) Wave speed:

CR = 1 + C9εR + C10ε
2
R + C11ε

3
R + C12ε

4
R + . . . , (13)

CL = 1 + C9εL + C10ε
2
L + C11ε

3
L + C12ε

4
L + . . . . (14)
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Results

(c) Velocity at the bottom (U):

U = C5A + C6A
2 + C7B + C8B

2 . . . . (15)

(d) Phase Shift:

θ =
b

4KL

∫ η

−∞

[
1 +

42A− 1

4
εa− 13

4
εb

]
Bdη1, (16)

ϕ =
a

4KR

∫ ξ

−∞

[
1 +

42B − 1

4
εb − 13

4
εa

]
Adξ1, (17)
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Results
In above Eq. (16) and Eq. (17) the terms which are dependent of ξ and
η are just the non-uniform phase shifts i.e. at different points of wave the
phase shift is different which causes a distortion in wave during collision.
For this purpose the terms which are products of A(ξ) and B(η) in Eq. (15)
must vanish. Then the right going wave becomes, after setting B(η) = 0,
we have
(e) Distortion Profile:

ζ = C1A + C2A
2 + . . . . (18)

(f) Maximum Run-up Amplitude during Collision: The head-on collision
between two solitary waves having maximum height defined by εR and εL.
It can easily observed when A(ξ) = 1 and B(η) = 1 then maximum run-up
amplitude exists at the point ξ and η and hence

MR = εL + C13ε
3
L + C14ε

4
L + εR + C13ε

3
R + C14ε

4
R + C15εLεR + C16ε

2
LεR

+ C16εLε
2
R + C17ε

2
Lε

2
R . (19)
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Results

(ii) For two identical solitary waves εR = εL, we get

MI
R = C18εL + C19ε

2
L + C20ε

3
L + C21ε

4
L. (20)

where A(ξ) = sech2 ξ
2 and B(η) = sech2 η

2 with ξ and η, where ξ and η
are defined in Eq. (7). The constants (Cn, n = 1, 2, 3 . . . ) appearing in the
above equations are arbitrary.
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Graphical results
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Fig: 5. Head on collision between solitary waves for different time period.
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Graphical results
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Fig: 6. (a) Head on collision between solitary waves, (b) Distortion profile.
Solid line: Before collision, Dashed line: After collision.
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Conclusion

1. Head-on collision between two hydroelastic solitary waves under an
ice sheet has been analyzed.

2. Asymptotic solution have been obtained with the help of
Poincaré–Lighthill–Kuo (PLK) technique upto third order
approximation.

3. During head on collision the maximum wave amplitude occurs at
t = 0.

4. It is found that after the head on collision, solitary waves regain
their original shape and position.

5. It is also observed that wave profile tilts backward after collision in
the direction of wave propagation.

6. In Eq. (4) by taking D → 0, the present results reduces to the
results obtained by Su and Mirie[7].

[7]Su, C. H., & Mirie, R. M. (1980). On head-on collisions between two solitary
waves. J. Fluid Mech. 98(3), 509–525.
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Thank you for your attention...
Any comments or suggestion...
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