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Introduction

Discontinuous dynamical system is one of the basic

instruments to understand better the role of discontinuous

in the real world.

Extending non-continuous theory to singularly perturbed

system is a contemporary problem. The nearly

achievement in this field can be found in Mingkang Ni &

Nefedov N 2015.



Introduction

Consider the following problemεu
′′

= A(u, x)u′ + f(u, x), 0 < x < 1,

u(0, ε) = u0, u(1, ε) = u1,
(1.1)

where ε is a small positive parameter, u is scalar-valued state

variable.



Introduction

Moreover, A and f are both discontinuous.

A(u, x) =

A(−)(u, x), 0 ≤ x < x0,

A(+)(u, x), x0 < x ≤ 1,
(1.2)

f(u, x) =

f (−)(u, x), 0 ≤ x < x0,

f (+)(u, x), x0 < x ≤ 1,
(1.3)

where x0 is a given number such that 0 < x0 < 1.



Introduction

This question under the continuous assumption has proved that

its solution belongs to a C2 function family.

Definition

A function

u(x, ε) ∈ C1[0, 1] ∩ (C2(0, x0) ∪ C2(x0, 1)),

satisfies problem (1.1) is the solution of this problem.



Assumptions

Condition 1

A(−), f (−) ∈ C∞(D1,R), A(+), f (+) ∈ C∞(D2,R), and the

following inequality holds

A(−)(u, x0) 6= A(+)(u, x0), u ∈ Iu,

f (−)(u, x0) 6= f (+)(u, x0), u ∈ Iu.

Condition 2

A(−) and A(+) satisfy the inequalitiesA(−)(u, x) > 0, 0 ≤ x ≤ x0,

A(+)(u, x) < 0, x0 ≤ x ≤ 1.
(2.1)



Assumptions

In order to construct a multi-scale uniformly valid asymptotic

solution, let us consider the degenerate and associated systems.

The degenerate equation of this problem on the interval [0, x0]A(−)(u(−), x)u
′(−) + f (−)(u(−), x) = 0, 0 < x ≤ x0,

u(−)(0, ε) = u0.
(2.2)

Similarly the degenerate equation on the interval [x0, 1]A(+)(u(+), x)u
′(+) + f (+)(u(+), x) = 0, x0 ≤ x < 1,

u(+)(1, ε) = u1.
(2.3)



Assumptions

For the degenerate equations, we make the assumption:

Condition 3

The degenerate equations (2.2) and (2.3) have only one

solution ϕ1(x) ∈ C2(0, x0) and ϕ2(x) ∈ C2(x0, 1).

To be definite, we assume that ϕ1(x0) < ϕ2(x0).



Assumptions

To find the leading term of the inner transition layer, we

introduce the auxiliary variable z = du/dx and suppose that

z(∓)(x0, ε) = ε−1z
(∓)
−1 + z

(∓)
0 + εz

(∓)
1 + · · · , where z

(∓)
i will be

determined later. Then we get the associated system
dz̃

dξ
= A(∓)(ũ, x0)z̃,

dũ

dξ
= z̃, ξ ∈ R∓,

ũ(0) = p, ũ(∓∞) = ϕi(x0),

z̃(0) = z
(∓)
−1 , z̃(∓∞) = 0,

(2.4)

where i = 1, 2, ξ = (x− x0)/ε and p ∈ (ϕ1(x0), ϕ2(x0)).



Assumptions

By Condition 2 and Condition 3, we have that in the phase

plane (ũ, z̃) there exists a separatrix of the form

Ω(∓) : z̃ =

∫ ũ

ϕi(x0)
A(∓)(s, x0)ds,

which enters the equilibrium point (ϕi(x0), 0) as

ξ → ∓∞(i = 1, 2).

Condition 4

In the phase plane (ũ, z̃), the vertical ũ = p intersects the

separatrics Ω(∓) for any p ∈ (ϕ1(x0), ϕ2(x0)).



Construction of Asymptotic Solution

To construct the asymptotic solution of problem (1.1), we

consider two boundary value problems:εu
′′(∓) = A(∓)(u(∓), x)u

′(∓) + f (∓)(u(∓), x),

u(∓)(i, ε) = ui, u(−)(x0, ε) = p(ε), i = 0, 1,
(3.1)

The function p(ε) will be determined later and it has an

asymptotic expansion of the form

p(ε) = p0 + εp1 + · · ·+ εkpk + · · · , (3.2)

where pi will be determined later.



Construction of Asymptotic Solution

Making the changes of variable z(∓) = du(∓)/dx, and a formal

solution of problem (3.1)

u(∓)(x, ε) = ū(∓)(x, ε) +Q(∓)u(ξ, ε), (3.3)

z(∓)(x, ε) = z̄(∓)(x, ε) +Q(∓)z(ξ, ε), (3.4)

where

ū(∓)(x, ε) = ū
(∓)
0 (x) + εū

(∓)
1 (x) + ε2ū

(∓)
2 (x) + · · · ,

z̄(∓)(x, ε) = z̄
(∓)
0 (x) + εz̄

(∓)
1 (x) + ε2z̄

(∓)
2 (x) + · · · ,

Q(∓)u(ξ, ε) = Q
(∓)
0 u(ξ) + εQ

(∓)
1 u(ξ) + ε2Q

(∓)
2 u(ξ) + · · · ,

Q(∓)z(ξ, ε) = ε−1Q
(∓)
−1 z(ξ) +Q

(∓)
0 z(ξ) + εQ

(∓)
1 z(ξ) + · · · ,

ξ = (x− x0)/ε.



Construction of Asymptotic Solution

In the standard manner, firstly substituting (3.3) and (3.4) into

problem (3.1), then separating the variables according to the

scale of x and ξ, finally equating the coefficients of same power

of ε.



Construction of Asymptotic Solution

Regular part

For k = 0: A
(∓)(ū

(∓)
0 , x)

dū
(∓)
0

dx
+ f(ū

(∓)
0 , x) = 0,

ū
(∓)
0 (i) = ui, i = 0, 1.

(3.5)

For k ≥ 1:
A(∓)(ū

(∓)
0 , x)z̄

(∓)
k (x) =

dz̄
(∓)
k−1
dx

+ F
(∓)
k (x),

dū
(∓)
k

dx
= z̄

(∓)
k (x),

ū
(∓)
k (0) = 0.

(3.6)

ū
(∓)
k (x) =

∫ x

0

1

A(∓)(ū
(∓)
0 , s)

(ū
(∓)
k−1(s) + F (∓)(s))ds.



Construction of Asymptotic Solution

Internal layer

For (Q
(∓)
0 u(ξ), Q

(∓)
−1 z(ξ)), we obtain the following problem

dQ
(∓)
−1 z

dξ
= A(∓)(ϕi(x0) +Q

(∓)
0 u, x0)Q

(∓)
−1 z,

dQ
(∓)
0 u

dξ
= Q

(∓)
−1 z,

Q
(∓)
−1 z(∓∞) = 0, Q

(∓)
0 u(∓∞) = 0,

Q
(∓)
−1 z(0) = z

(∓)
−1 , Q

(∓)
0 u(0) = p0 − ϕi(x0).

(3.7)

by virtue of Condition 4 it has a solution Q
(∓)
0 u(ξ).



Construction of Asymptotic Solution

For (Q
(∓)
k u(ξ), Q

(∓)
k−1z(ξ)) with k ≥ 1, we obtain

dQ
(∓)
k−1z

dξ
= A(∓)(ξ)Q

(∓)
k−1z +A(∓)

u (ξ)Q
(∓)
−1 zQ

(∓)
k u+G

(∓)
k−1(ξ),

dQ
(∓)
k u

dξ
= Q

(∓)
k−1z,

Q
(∓)
k−1z(∓∞) = 0, Q

(∓)
k u(∓∞) = 0,

Q
(∓)
k−1z(0) = z

(∓)
k−1 − z̄

(∓)
k−1(x0), Q

(∓)
k u(0) = pk − ūk(x0).

(3.8)

Q
(∓)
k u(ξ) =e

∫ ξ
0 A

(∓)(s)ds(

∫ ξ

0

∫ s

∓∞
G

(∓)
k−1(q)dqe

−
∫ s
0 A

(∓)(q)dqds)

+ e
∫ ξ
0 A

(∓)(s)ds(pk − ūk(x0)).
(3.9)



Construction of Asymptotic Solution

To find pk, we use the matching condition for the derivatives

at the point x = x0

u
′(−)(x0, ε) = u

′(+)(x0, ε),

taking into account the fact that u′ = z, we obtain the following

equivalent condition

z(−)(x0, ε) = z(+)(x0, ε). (3.10)



Construction of Asymptotic Solution

First we find p0. In the approximation in ε−1, the matching

condition is written as

Q
(−)
−1 z(0) = Q

(+)
−1 z(0).

To solve this equation, let

H(p) =

∫ p

ϕ1(x0)
A(−)(s, x0)ds−

∫ p

ϕ2(x0)
A(+)(s, x0)ds. (3.11)

We have verified that H(p) has a unique root

p0 ∈ (ϕ1(x0), ϕ2(x0)).



Construction of Asymptotic Solution

In the sequel, we find pk with k ≥ 1. Now the condition is

written as

z̄
(−)
k−1(x0) +Q

(−)
k−1z(0) = z̄

(+)
k−1(x0) +Q

(+)
k−1z(0). (3.12)

We obtain

pk =(A(−)(p0, x0)−A(+)(p0, x0))
−1[z̄

(+)
k (x0)− z̄(−)k (x0)

+A(−)(p0, x0)ū
(−)
k (x0)−A(+)(p0, x0)ū

(+)
k (x0)

+

∫ 0

+∞
G

(+)
k−1(s, x0)ds−

∫ 0

−∞
G

(−)
k−1(s, x0)ds].

(3.13)

Thus, we construct the coefficient functions of ū
(∓)
k (x), Q

(∓)
k u(ξ)

for any k.



Main results

Theorem

Assume that Conditions 1-4 hold. Then for sufficiently small

ε > 0 there exist a smooth solution u(x, ε) of boundary-value

problem (1.1), and this solution can be asymptotically

represented as

u(x, ε) =



n+1∑
k=0

εk[ū
(−)
k (x) +Q

(−)
k u(ξ)] +O(εn+2), 0 ≤ x ≤ x0,

n+1∑
k=0

εk[ū
(+)
k (x) +Q

(+)
k u(ξ)] +O(εn+2), x0 ≤ x ≤ 1.



Example

We consider the boundary-value problem

εu
′′

=


(1− x)u′ + 6x(1− x), 0 < x <

1

2
,

(x− 2)u′ + 2x(x− 2),
1

2
< x < 1,

(4.1)

u(0) = 0, u(1) = 1. (4.2)

The corresponding degenerate equations have the root

ϕ1(x) = −3x2 for x ∈ [0,
1

2
] and the root ϕ2(x) = x2 for

x ∈ [
1

2
, 1].

It is easy to verify that all conditions of the Theorem are

fulfilled, where p0 is defined by the equation

H(p) =

∫ p

−3/4

1

2
ds+

∫ p

1/4

3

2
ds, and p0 = 0.



Example

Thus, Theorem implies that problem (4.1) and (4.2) has a

solution u = u(x, ε) satisfying the condition

u(x, ε) =


−3x2 +

3

4
e

1
2
ξ +O(ε), x ∈ [0, 1/2],

x2 − 1

4
e−

3
2
ξ +O(ε), x ∈ (1/2, 1].

(4.3)



Example

Figure: Asymptotic solution of problem (4.1) and (4.2) with

ε = 0.01(dotted) and ε = 0.001(solid).



Thank you!
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