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Non-Newtonian viscoelastic flows are found in several industrial 
and biological applications, such as polymer processes, coating 
and extrusion of polymeric material and artificial organs. Due to 
the hyperbolic character of the constitutive eqution, numerial 
simulation of viscoelastic flows is a difficult and expensive task.
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  Let      be a bounded, connected open set in      with Lipschitzian 
boundary    . For the incompressible flows, the continuity and 
momentum equations are given by:

   and 

Where Re is the Reynolds number, u the velocity vector, p the 
pressure, T the extra stress tensor, f the density and D/Dt the 
substantial derivative.
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The extra stress can be divided into a viscous contribution and a 
viscoelastic contribution, i.e.

The viscoelastic stress tensor    satisfies the following PTT constitutive
equation:

Where         has the following form:
                                    

Where    is Weissenberg number and g is a bilinear mapping defined by 
 

2(1 ) ( )T D u   


( ) ( ( , )) 2 ( )DF g u D u
Dt
       



( , ) Tg u u u     

( )F 

( ) exp ( )F tr 


   
 
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Least Square Finite Element Method

    Consider the following differential equation:

Consider least square functional:

and unconstriant optimization problem:

1 Background

, ,
, ,
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Least Square Finite Element Method
 

The least square finite element method is choosing a finite element 
subspace             , and limting the optimization problem in the 
subspace. The approximation solutions                of least square 
method is the solution of following optimization problem:

And we can obtain the Euler-Lagrange equation of the optimization 
problem:

Where                                                     and  

hS S

h hu S

min ( ; , ).
h hu S

J u f g


( , ) ( ),
( , ) ( ),h h h h h

B u v F v v S
B u v F v v S

  
   

( , ) ( , ) ( , )H HB u v Lu Lv Ru Rv
 

  ( ) ( , ) ( , )H HF v Lu f Ru g
 

 
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Consider the following PTT fluid model:

We decouple the system into Stokes equation and constitutive 
equation. The algorithm as following:
(1)Suppose that      is obtianed from the previous iteration, we slove 
the following Stokes system to get     and     by WLS method.

2 Main Work PTT fluid model 

0
( ) 2(1 ) ( ) 0

( ) ( ) ( , ) 2 ( )
0

T p f x
u x

P T D u x
F u g u D u x
u x

 
      
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 


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(2)Using the value of    computed by the first step, we solve this 
constitutive equation:

                 

2 Main Work PTT fluid model 

0
( 1)

2(1 ) ( ) 0
0

T p f x
u x

P
T D u x
u x

 

    
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     
  

u
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2 Main Work WLS Method

We define the following function spaces for the unkown functions: 
the velocity    , the pressure    , the extra-stress tensor      and the 
viscoelastic stress    

Let                               
Then we define the finite element spaces for unkown functions
as follows:

 

u p 


1 1
0 0

2 2
0

2

2

( ) { ( ) : | 0}

( ) { ( ) : 0}

{ ( ) : , ( )}

{ , ( ), }

d d

ij ij ji ij

V H v H v
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 
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

     

     
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      



X V Q T S   
, ,u p T
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2 Main Work WLS Method

2 22 2

2

( , , ) 2(1 ) ( )

( 1)

J v q h D v Lh v

q f F

   



      

    

1

2

3

2 2

4 4

{ ( ) , | ( ) , }

{ ( ), | ( ), }

{ ( ) , | ( ) , }

h
h k l

h
h k l

h
h k l

V v V C v P K K

Q q Q C q P K K

S S C P K K





  

     

     

     







Let                          and we establish the weighted least square 
functional of problem (P1) as follows:  

h h h hX V Q S  
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2 Main Work WLS Method

Then the least spuare variation problem of  (P1) is find the minimizer 
of  (F1) in space X, that is find                       satisfies:

If              is the minimizer point of the problem above, then           
must satisfies the following Euler-Lagrange equation:

Where 

( , , )u p T X

( , , )
( , , ) inf ( , , )

v q X
J u p T J v q







( , , )u p T ( , , )u p T

( , , ; , , ) ( ; , , ), ( , , )Q u p T v q F v q v q X     

2

2

( , , ; , , ) ( 2(1 ) ( )) : ( 2(1 ) ( ))

( ) ( ) ( )( )

Q u p T v q h T D u D v

T p q Lh u v dx

   









    

          


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And
2( ; , , ) : ( 2(1 ) ( )) ( )F v q h D v f q dx     


       

The WLS finite element method for (P1) is find the minimizer of 
functional (F1) in the space     , that is find                          satisfies:hX ( , , )h h h hu p T X

( , , ; , , ) ( ; , , ), ( , , )h h h h h h h h h h h h h hQ u p T v q F v q v q X     

And the minimizer                  satisfies the following Euler-Lagrange 
equation as well

( , , )h h hu p T
( , , )

( , , ) inf ( , , )
h h h h

h h h h h hv q X
J u p T J v q





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2 Main Work Error Estimate

( , , )u p T
( , , )h h hu p T

2
1

( )h h h hu u p p T T C O h        

( , , , )u p T 
( , , , )h h h hu p T 

3/2
1

+h h h hu u p p T T Ch       
  , ( )h hu L   
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3 Numerical results

In this section, we present some numerical examples obtained by 
the weighted least-squares finite element method. We take for the 
domain the unit square                      with Dirichlet boundary 
conditions (see Fig. 1)

=[0,1] [0,1] 

Fig. 1. The geometry and 
boundry conditions RESULT
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RESULT

We choose the exact solution               as follows:
 

( , , )u p 
41

0
y

u
 

  
 

2p x 
6 3

3

32 4
=

4 0
y y
y

 



 
 
 

The parameters in the constitutive equation are set as a =1and    =1/9. 
Therefore, the right-hand side terms of the momentum and 
constitutive equations are given by



212 2
0
y x

f
 

 
 

2 6 12 2 9

2 9 6

32 / 9 1024 / 9 128 (1 ) / 9
128 (1 ) / 9 32 / 9stress
y y

f
y y

   
  

  
  
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Meshes    m No. of 
element

No. of 
nodes

No. of 
unknows

h

M1 8 128 81 646 0.1768

M2 16 512 289 2438 0.0884

M3 24 1152 625 5328 0.0589

Fig.2. Union Jack grid for m=8

3 Numerical results
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Fig. 3.       errors in u, p,    and T for Oldroyd-B model 
with   

2L 
=0.5
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Fig. 3       errors in u, p,    and T for Oldroyd-B model with   2L  =21
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         Fig. 4       errors in u, p,      and T for PTT model with   2L  =0.5

RESULT



4 Conclusions
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Weissenberg number λ =0.5. The rates of convergence in L2errors 
for u, p, τ and T are 2.1, 1.59, 1.83 and 1.81, respectively. The 
results at λ =21are shown in Fig.3. After that, we consider the PTT 
viscoelastic model. The parameter εis set to 0.2. The upper limiting 
Weissenberg number is quickly reached at 3.5. In Fig.4, the results 
are obtained by using the three meshes at λ =0.5. In our numerical 
results, the convergence rates of the finite element solutions are 
nearly quadratic for velocity and superlinear for stress and pressure.

RESULT



Thank you!
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